Augusto Pablo Salonio Carbó 2025-09-09
- Overview
- Skills Demonstrated
- Key Features
- Repository Structure
- Setup and Usage
- Key Results
- Visualizations
- Visualizations
- Contact
- Licence
- Citations
- Acknowledgements
This repository contains the R scripts and documentation for my thesis, which models forest fire ignition probability in Villaflores, Chiapas, Mexico. The project integrates geospatial and statistical methods to assess fire risk. It uses climate, topographic, demographic, and vegetation data, with applications for environmental management and policy.
- Geospatial Analysis: Process and analyze spatial data (DEMs, land
cover, Landsat imagery, census data) using
terraandsf. - Spatial Modeling: Build and evaluate logistic regression models
with
glm,pROC, andMuMIn. - Data Processing: Clean and interpolate datasets (e.g., kriging for
population density) with
dplyrandgstat. - Visualization: Create maps, correlation plots, and ROC curves with
ggplot2andcorrplot. - Reproducible Workflows: Structure code and documentation for collaboration and transparency.
- Data Processing: Climate(WorldClim), topographic (Digital Elevation Model), demographic (Mexican census and roads networks), and landscape (vegetation land cover, Landsat imagery) analysis.
- Analysis: Spatial interpolation (ordinary kriging), logistic regression modeling, and AUC evaluation (mean AUC ~0.8).
- Tools: R packages
terra,sf,dplyr,ggplot2,pROCand more. - Outputs: Fire occurrence maps, variable importance plots, and model performance metrics.
Villaflores_Wildfire/
├── scripts/ # R scripts for analysis ()
│ ├── topography.R # Topographic analysis (DEM, slope, TPI)
│ ├── climate.R # Climate data processing (WorldClim)
│ ├── demography.R # Demographic analysis (census, roads)
│ ├── landscape.R # Land cover and vegetation analysis
│ ├── ignition_analysis.R # Fire ignition point analysis (2012-2024)
│ ├── grid.R # Grid-based spatial analysis
│ ├── model.R # Logistic regression modeling
│ ├── test.R # Model evaluation and validation
│ └── README.md # Script-specific instructions
├── data/ # Not included in repo (see Setup and Usage)
├── output/ # Analysis outputs
│ ├── plots/ # Visualizations (e.g. model AUC)
│ ├── models/ # Models
│ └── grid/ # Spatial outputs (e.g., malla_mod_F15.shp)
├── docs/ # Documentation
│ ├── thesis_summary.pdf # Thesis overview
│ └── visualizations/ # Key figures (e.g., QGIS maps)
├── README.md # This file
├── LICENSE # MIT License
└── .gitignore # Ignores temporary/large files- Install R (version >= 4.0) and required packages:
install.packages(c('terra', 'sf', 'dplyr', 'tidyterra', 'ggplot2', 'pROC', 'ROCR',
'readr', 'tidyr', 'openxlsx', 'lubridate', 'parzer', 'leaflet',
'corrplot', 'usdm', 'rgee', 'RStoolbox', 'raster', 'rgeos',
'exactextractr', 'car', 'splines', 'mgcv', 'lme4', 'lmtest',
'glmmTMB', 'performance', 'pscl', 'DescTools', 'fmsb', 'cvAUC',
'MuMIn', 'PresenceAbsence', 'landform', 'geodata', 'maptools',
'classInt', 'RColorBrewer', 'rasterVis', 'spatialEco', 'gridExtra'))## Error in install.packages : Updating loaded packages
-
Clone the repository: git clone https://github.com/ASalonio/Villaflores_Wildfire.git
-
Download data for terrain analysis and model inputs: Kaggle dataset
-
Run scripts in order:
topography.R → climate.R → demography.R → landscape.R → ignition_analysis.R → grid.R → model.R → test.R.
- Developed a logistic regression model with AUC ~0.8 and Pseudo-R² ≈0.3
- Identified vegetation density proxies (WDVI_Q3, MSAVI_Q1), road density, population density, and wind speed as key predictors of fire risk.
- Produced geospatial outputs including fire ignition probability maps, to support fire management strategies in Villaflores.
- Results can inform local fire prevention policies by highlighting high-risk areas and key environmental drivers
Below is the variable importance plot, showing the contribution of
predictors to fire risk prediction (from test.R), and Villaflores fire
ignition probability for the years 2012 to 2024.
See docs/visualizations for additional outputs, including thesis summary and fire ignition probability. map.
Connect with me on LinkedIn or email [email protected].
This project is licensed under the MIT License - see the LICENSE file for details.
If you use this repository or dataset in your research, please cite:
Augusto Pablo Salonio Carbó (2025). Fire Risk Analysis in Villaflores, Mexico. GitHub repository,https://github.com/ASalonio/Villaflores_Wildfire.git
- INEGI for census and geospatial data from Mexico.
- NASA for Landsat imagery.
- WorldClim for climate data.
- Open-source R packages and the R community for their tools and support.

