|
1 | 1 | import re
|
2 | 2 | import os
|
3 |
| -import json |
4 | 3 | import torch
|
5 | 4 | import torch.distributed as dist
|
6 | 5 | from typing import List, Union
|
|
13 | 12 | from lightllm.utils.envs_utils import get_unique_server_name, get_env_start_args
|
14 | 13 | from lightllm.distributed.pynccl import PyNcclCommunicator
|
15 | 14 | from lightllm.utils.dist_utils import get_current_device_id
|
16 |
| -from lightllm.utils.envs_utils import get_kv_quant_calibration_inference_count |
17 |
| -from lightllm.utils.envs_utils import get_kv_quant_calibration_warmup_count |
18 |
| -from lightllm.utils.dist_utils import get_global_rank |
19 |
| -from lightllm.utils.config_utils import get_model_architectures |
20 | 15 |
|
21 | 16 | logger = init_logger(__name__)
|
22 | 17 |
|
23 | 18 |
|
24 |
| -class OfflineFP8QuantManager: |
25 |
| - def __init__(self, layer_num, head_num): |
26 |
| - self.qmin = torch.finfo(torch.float8_e4m3fn).min |
27 |
| - self.qmax = torch.finfo(torch.float8_e4m3fn).max |
28 |
| - self.model_arch = get_model_architectures(get_env_start_args().model_dir) |
29 |
| - self.layer_num = layer_num |
30 |
| - self.head_num = head_num |
31 |
| - self.total_head_num = head_num * dist.get_world_size() if dist.is_initialized() else head_num |
32 |
| - self.scales_shape = [layer_num, 2 * head_num] if get_env_start_args().enable_fa3 else [layer_num, 2] |
33 |
| - self.scales = None |
34 |
| - self.scales_list = [] |
35 |
| - self.abs_max = None |
36 |
| - self.warmup_counts = get_kv_quant_calibration_warmup_count() |
37 |
| - self.inference_counts = get_kv_quant_calibration_inference_count() |
38 |
| - self.count = 0 |
39 |
| - self.enable_calib = False |
40 |
| - if get_env_start_args().export_kv_quant_calibration: |
41 |
| - self.abs_max = torch.zeros(self.scales_shape, dtype=torch.float32, device="cuda") |
42 |
| - elif get_env_start_args().kv_quant_calibration_config_path is not None: |
43 |
| - logger.info( |
44 |
| - f"kv_quant_calibration_config_path {get_env_start_args().kv_quant_calibration_config_path} is set, " |
45 |
| - "will load kv quant calibration config" |
46 |
| - ) |
47 |
| - if os.path.exists(get_env_start_args().kv_quant_calibration_config_path): |
48 |
| - with open(get_env_start_args().kv_quant_calibration_config_path, "r") as f: |
49 |
| - cfg = json.load(f) |
50 |
| - |
51 |
| - if cfg["architectures"] != self.model_arch: |
52 |
| - raise ValueError( |
53 |
| - f"architectures {cfg['architectures']} in config " |
54 |
| - f"not match current model_arch {self.model_arch}" |
55 |
| - ) |
56 |
| - if cfg["num_layers"] != layer_num: |
57 |
| - raise ValueError( |
58 |
| - f"num_layers {cfg['num_layers']} in config " f"not match current layer_num {layer_num}" |
59 |
| - ) |
60 |
| - if cfg["num_head"] != self.total_head_num: |
61 |
| - raise ValueError( |
62 |
| - f"num_head {cfg['num_head']} in config " |
63 |
| - f"not match current model head num {self.total_head_num}" |
64 |
| - ) |
65 |
| - if get_env_start_args().enable_fa3: |
66 |
| - if cfg["quant_type"] != "per_head": |
67 |
| - raise ValueError(f"quant type {cfg['num_head']} in config not match fa3 backend") |
68 |
| - else: |
69 |
| - if cfg["quant_type"] != "per_tensor": |
70 |
| - raise ValueError(f"quant type {cfg['quant_type']} in config not match flashinfer backend") |
71 |
| - |
72 |
| - self.qmin = cfg["qmin"] |
73 |
| - self.qmax = cfg["qmax"] |
74 |
| - self.scales_shape = cfg["scales_shape"] |
75 |
| - |
76 |
| - full_scales_list = cfg["scales"] |
77 |
| - self.scales_list = full_scales_list |
78 |
| - self.scales = torch.tensor(self.scales_list, dtype=torch.float32, device="cuda").view(self.scales_shape) |
79 |
| - if not get_env_start_args().enable_fa3: |
80 |
| - self.scales = torch.repeat_interleave(self.scales, self.head_num, dim=-1) |
81 |
| - if get_env_start_args().enable_fa3 and dist.is_initialized() and dist.get_world_size() > 1: |
82 |
| - half_head = self.total_head_num // 2 |
83 |
| - start_head = dist.get_rank() * head_num |
84 |
| - end_head = start_head + head_num |
85 |
| - k_scales = self.scales[:, start_head:end_head].contiguous() |
86 |
| - v_scales = self.scales[:, start_head + half_head : end_head + half_head].contiguous() |
87 |
| - current_scales = torch.cat((k_scales, v_scales), dim=-1) |
88 |
| - |
89 |
| - self.scales_list = current_scales.tolist() |
90 |
| - self.scales = current_scales |
91 |
| - else: |
92 |
| - raise FileNotFoundError( |
93 |
| - f"kv_quant_calibration_config {get_env_start_args().kv_quant_calibration_config_path} not found" |
94 |
| - ) |
95 |
| - elif "calibration_fp8kv" in get_env_start_args().mode: |
96 |
| - logger.warning("scales is None, no kv_quant_calibration_config_path be set") |
97 |
| - |
98 |
| - def enable_calibration(self): |
99 |
| - assert get_env_start_args().disable_cudagraph, "Calibration is not supported in cudagraph mode" |
100 |
| - logger.info("Enable kv cache calibration, will collect kv cache data for quantization calibration") |
101 |
| - self.enable_calib = True |
102 |
| - |
103 |
| - def update_calibration_data(self, kv_buffer: torch.Tensor, layer_index: int): |
104 |
| - if not self.enable_calib or self.count >= self.warmup_counts + self.inference_counts: |
105 |
| - return |
106 |
| - |
107 |
| - if self.abs_max is not None and self.count >= self.warmup_counts: |
108 |
| - if get_env_start_args().enable_fa3: |
109 |
| - kv_max = kv_buffer.abs().amax(dim=(0, 2)).to(torch.float32) |
110 |
| - else: |
111 |
| - k_max = kv_buffer[:, : self.head_num, :].abs().amax(dim=()).to(torch.float32) |
112 |
| - v_max = kv_buffer[:, self.head_num :, :].abs().amax(dim=()).to(torch.float32) |
113 |
| - kv_max = torch.tensor([k_max, v_max], device="cuda", dtype=torch.float32) |
114 |
| - self.abs_max[layer_index] = torch.maximum(self.abs_max[layer_index], kv_max) |
115 |
| - if self.count == self.warmup_counts + self.inference_counts - 1 and layer_index == self.layer_num - 1: |
116 |
| - final_abs_max = self.abs_max |
117 |
| - if dist.is_initialized() and dist.get_world_size() > 1: |
118 |
| - if get_env_start_args().enable_fa3: |
119 |
| - k_max, v_max = torch.chunk(self.abs_max, 2, dim=-1) |
120 |
| - k_max = k_max.contiguous() |
121 |
| - v_max = v_max.contiguous() |
122 |
| - gathered_k_max = [torch.zeros_like(k_max) for _ in range(dist.get_world_size())] |
123 |
| - gathered_v_max = [torch.zeros_like(v_max) for _ in range(dist.get_world_size())] |
124 |
| - dist.all_gather(gathered_k_max, k_max, group=None, async_op=False) |
125 |
| - dist.all_gather(gathered_v_max, v_max, group=None, async_op=False) |
126 |
| - k_max = torch.cat(gathered_k_max, dim=-1) |
127 |
| - v_max = torch.cat(gathered_v_max, dim=-1) |
128 |
| - final_abs_max = torch.cat((k_max, v_max), dim=-1) |
129 |
| - else: |
130 |
| - dist.all_reduce(self.abs_max, op=dist.ReduceOp.MAX, group=None, async_op=False) |
131 |
| - |
132 |
| - self.scales = final_abs_max / self.qmax |
133 |
| - self.scales = torch.where(self.scales > 0, self.scales, torch.ones_like(self.scales)) |
134 |
| - |
135 |
| - if get_global_rank() == 0: |
136 |
| - self.abs_max = final_abs_max |
137 |
| - self._export_calibration_data() |
138 |
| - |
139 |
| - if layer_index == self.layer_num - 1: |
140 |
| - self.count += 1 |
141 |
| - |
142 |
| - def _export_calibration_data(self): |
143 |
| - cfg = { |
144 |
| - "version": "1.0", |
145 |
| - "architectures": self.model_arch, |
146 |
| - "quant_type": "per_head" if get_env_start_args().enable_fa3 else "per_tensor", |
147 |
| - "qmin": self.qmin, |
148 |
| - "qmax": self.qmax, |
149 |
| - "num_layers": self.layer_num, |
150 |
| - "num_head": self.total_head_num, |
151 |
| - "scales_shape": list(self.abs_max.shape), |
152 |
| - "scales": self.scales.cpu().numpy().tolist(), |
153 |
| - } |
154 |
| - with open("./kv_cache_calib.json", "w") as f: |
155 |
| - json.dump(cfg, f, indent=4) |
156 |
| - logger.info( |
157 |
| - f"Export kv cache calibration data to kv_cache_calib.json, " |
158 |
| - f"architectures: {self.model_arch}, " |
159 |
| - f"qmin: {self.qmin}, qmax: {self.qmax}, " |
160 |
| - f"total heads: {self.total_head_num}, " |
161 |
| - f"scales_shape: {list(self.abs_max.shape)}, " |
162 |
| - ) |
163 |
| - |
164 |
| - |
165 | 19 | class MemoryManager:
|
166 | 20 | def __init__(self, size, dtype, head_num, head_dim, layer_num, always_copy=False, mem_fraction=0.9):
|
167 | 21 | self.size = size
|
@@ -198,7 +52,6 @@ def __init__(self, size, dtype, head_num, head_dim, layer_num, always_copy=False
|
198 | 52 | layer_num,
|
199 | 53 | )
|
200 | 54 | self.HOLD_TOKEN_MEMINDEX = self.size
|
201 |
| - self.offline_fp8_quant_manager = OfflineFP8QuantManager(layer_num, head_num) |
202 | 55 |
|
203 | 56 | def get_cell_size(self):
|
204 | 57 | return 2 * self.head_num * self.head_dim * self.layer_num * torch._utils._element_size(self.dtype)
|
|
0 commit comments