Skip to content

Implement interpolation and balancing for numeric variables (e.g., income) #20

@vahid-ahmadi

Description

@vahid-ahmadi

In our process, we need to ensure that numeric variables (such as income) are properly balanced and interpolated when necessary.

Interpolation techniques:

  • Linear Interpolation (pandas.DataFrame.interpolate(method='linear'))
  • Polynomial Interpolation (numpy.polyfit)
  • Spline Interpolation (scipy.interpolate.spline or scipy.interpolate.interp1d)
  • KNN-based Imputation (sklearn.impute.KNNImputer)

Balancing techniques:

  • Standardization (sklearn.preprocessing.StandardScaler)
  • Quantile Normalization (scipy.stats.mstats.rankdata)
  • SMOTER (Synthetic Minority Over-sampling Technique for Regression) for balancing underrepresented numeric values (imblearn.over_sampling.SMOTER)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions