6868% Indicates impermeable area contribution (qualitative description in
6969% Becker and McDonnell, 1998).
7070%
71- % Event signatures from Wu et al., (2021); translated to Matlab in
72- % Bolotin and McMillan (2025).
73- % R_Pvol_RC: Pearson correlation beween total precipitation vs. normalized quick flow
71+ % Event signatures from Wu et al., (2021); translated to Matlab in Bolotin and McMillan (2025).
72+ %
73+ % *** Note: This signature, especially R_Pint_RC, is reliable only for
74+ % sub-daily temporal resolution (hourly data is used in Wu et al., 2021).
75+ % If you are using daily data, we recommend using sig_EventGraphThresholds_hourlyfrac.m instead. ***
76+ %
77+ % R_Pvol_RC: Pearson correlation between total precipitation vs. normalized quick flow
7478% (equivalent to event runoff coefficient = (quickflow volume / total P))
7579% Related to stormflow processes which are sensitive to rainfall volume,
76- % for example, SSF2, SOF, SSF1, and GWF. Called "SE_correlation" in
77- % Bolotin and McMillan (2025).
78- % R_Pint_RC: Pearson correlation beween average precipitation intensity vs. normalized quick flow
80+ % for example, SSF2, SOF, SSF1, and GWF. Called "SE_correlation" in Bolotin and McMillan (2025).
81+ %
82+ % R_Pint_RC: Pearson correlation beween maximum precipitation intensity vs. normalized quick flow
7983% Related to Stormflow processes which are sensitive to rainfall
80- % intensity, for example, HOF. Called "IE_correlation" in
81- % Bolotin and McMillan (2025).
84+ % intensity, for example, HOF. Called "IE_correlation" in Bolotin and McMillan (2025).
8285%
8386% error_flag: 0 (no error), 1 (warning), 2 (error in data check), 3
8487% (error in signature calculation)
401404large_events = and(start_ratio < bfi , end_ratio < bfi );
402405
403406if sum(large_events )>2
404- % Spearman rank Corr of total P and average intensity with RC
407+ % Spearman rank Corr of total P (event_array(:,1)) and maximum intensity
408+ % (event_array(:,3)) with runoff coefficient per storm event
405409 [R_Pvol_RC ,~ ] = corr(event_array(large_events ,1 ), rcq(large_events ), ' Type' , ' Spearman' );
406- [R_Pint_RC ,~ ] = corr(event_array(large_events ,2 ), rcq(large_events ), ' Type' , ' Spearman' );
410+ [R_Pint_RC ,~ ] = corr(event_array(large_events ,3 ), rcq(large_events ), ' Type' , ' Spearman' );
407411else
408412 R_Pvol_RC = NaN ;
409413 R_Pint_RC = NaN ;
499503 title(' Quickflow vs intensity per season' ) % Wrede 2015
500504 fig_handles.EventGraphThresholdsSeasons = fig2 ;
501505
506+
507+ % plot Spearman rank correlation of total P and max intensity against
508+ fig3 = figure(' Position' ,[100 100 700 300 ]);
509+ subplot(1 ,2 ,1 )
510+ title(' R (Pvol, RC)' )
511+ hold on
512+ scatter(event_array(large_events ,1 ), rcq(large_events ), ' filled' ,' MarkerFaceAlpha' ,0.5 )
513+ xlabel(' Event total [mm]' )
514+ ylabel(' Event runoff coeff. [-]' )
515+ legend([' R_{Pvol\_RC} = ' , num2str(round(R_Pvol_RC ,2 ))], ' Location' , ' best' )
516+
517+ subplot(1 ,2 ,2 )
518+ title(' R (Pint, RC)' )
519+ hold on
520+ scatter(event_array(large_events ,3 ), rcq(large_events ), ' filled' ,' MarkerFaceAlpha' ,0.5 )
521+ xlabel(' Event max intensity [mm/timestep]' )
522+ ylabel(' Event runoff coeff. [-]' )
523+ legend([' R_{Pint\_RC} = ' , num2str(round(R_Pint_RC ,2 ))], ' Location' , ' best' )
524+
525+ fig_handles.EventGraphThresholds = fig3 ;
502526end
0 commit comments