Skip to content

Calibrating SSD-MobileNet with ImageNet #22

@psyhtest

Description

@psyhtest

SSD-MobileNet OpenVINO can be installed as follows:

$ ck install package --tags=model,tf,ssd-mobilenet,quantized,for.openvino
$ ck install package --tags=model,openvino,ssd-mobilenet

Attempting to use SSD-MobileNet via an *ssdm* command key when it's not installed, however, causes a fantastic (or rather phantasmagoric!) chain reaction involving ImageNet calibration:

$ ck run ck-openvino:program:mlperf-inference-v0.5 --cmd_key=singlestream_ssdm
...
Installing to /home/dividiti/CK-TOOLS/model-openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-ssd-mobilenet                                                          
######################################################################################
Converting annotations ...
/usr/bin/python3 /home/dividiti/CK-TOOLS/lib-openvino-gcc-7.5.0-pre-release-linux-64/openvino/inference-engine/tools/accuracy_checker_tool/convert_annotation.py imagenet --annotation_file /home/dividiti/C
K-TOOLS/dataset-imagenet-calibration-all.500/val_map.txt --labels_file /home/dividiti/CK-TOOLS/dataset-imagenet-ilsvrc2012-aux/synset_words.txt --has_background True --output_dir /home/dividiti/CK-TOOLS/m
odel-openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-ssd-mobilenet
######################################################################################
Running calibration ...
LD_LIBRARY_PATH=/home/dividiti/CK-TOOLS/lib-opencv-3.4.10-gcc-7.5.0-v3.4.10-linux-64/install/lib::/home/dividiti/CK-TOOLS/lib-openvino-gcc-7.5.0-pre-release-linux-64/lib ; /usr/bin/python3 /home/dividiti/
CK-TOOLS/lib-openvino-gcc-7.5.0-pre-release-linux-64/openvino/inference-engine/tools/calibration_tool/calibrate.py -c /home/dividiti/CK-TOOLS/model-openvino-converted-from-tf-lib.openvino-pre-release-data
set.imagenet.calibration-all.500-ssd-mobilenet/config.yml -M /home/dividiti/CK-TOOLS/lib-openvino-gcc-7.5.0-pre-release-linux-64/openvino/model-optimizer -e /home/dividiti/CK-TOOLS/lib-openvino-gcc-7.5.0-
pre-release-linux-64/lib -C /home/dividiti/CK-TOOLS/model-openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-ssd-mobilenet --output_dir /home/dividiti/CK-TOOLS/model-
openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-ssd-mobilenet
13:53:29 accuracy_checker WARNING: /home/dividiti/.local/lib/python3.6/site-packages/sklearn/utils/deprecation.py:143: FutureWarning: The sklearn.metrics.base module is  deprecated in version 0.22 and wil
l be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API.
  warnings.warn(message, FutureWarning)
13:53:29 openvino.tools.calibration WARNING: presenter was set to 'return_value'
Model Optimizer arguments:
Common parameters:
        - Path to the Input Model:      /home/dividiti/CK-TOOLS/model-tf-mlperf-resnet-downloaded/resnet50_v1.pb
        - Path for generated IR:        /home/dividiti/CK-TOOLS/model-openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-ssd-mobilenet
        - IR output name:       resnet50_v1
        - Log level:    ERROR
        - Batch:        Not specified, inherited from the model
        - Input layers:         Not specified, inherited from the model
        - Output layers:        softmax_tensor
        - Input shapes:         (1, 224, 224, 3)
        - Mean values:  Not specified
        - Scale values:         Not specified
        - Scale factor:         Not specified
        - Precision of IR:      FP32
        - Enable fusing:        True
        - Enable grouped convolutions fusing:   True
        - Move mean values to preprocess section:       False
        - Reverse input channels:       False
        - Use the config file:  None
TensorFlow specific parameters:
        - Input model in text protobuf format:  False
        - Path to model dump for TensorBoard:   None
        - List of shared libraries with TensorFlow custom layers implementation:        None
        - Update the configuration file with input/output node names:   None
        - Use configuration file used to generate the model with Object Detection API:  None
        - Operations to offload:        None
        - Patterns to offload:  None
        - Use the config file:  None
Model Optimizer version:        unknown version
[ SUCCESS ] Generated IR model.
[ SUCCESS ] Generated IR model.
[ SUCCESS ] XML file: /home/dividiti/CK-TOOLS/model-openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-ssd-mobilenet/resnet50_v1.xml
[ SUCCESS ] BIN file: /home/dividiti/CK-TOOLS/model-openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-ssd-mobilenet/resnet50_v1.bin
[ SUCCESS ] Total execution time: 11.63 seconds.
[ INFO ] CPU extensions is loaded /home/dividiti/CK-TOOLS/lib-openvino-gcc-7.5.0-pre-release-linux-64/lib/libcpu_extension.so
13:53:41 accuracy_checker WARNING: /home/dividiti/CK-TOOLS/lib-openvino-gcc-7.5.0-pre-release-linux-64/openvino/inference-engine/tools/calibration_tool/openvino/tools/calibration/base_calibrator.py:435: D
eprecationWarning: precision property of IENetLayer is deprecated. Please use precision property of DataPtr instead
  quantization_levels[layer.name] = layer.precision
13:53:41 openvino.tools.calibration INFO: Processor: x86_64
13:53:41 openvino.tools.calibration INFO: Collecting original network statistics for /home/dividiti/CK-TOOLS/model-openvino-converted-from-tf-lib.openvino-pre-release-dataset.imagenet.calibration-all.500-
ssd-mobilenet/resnet50_v1.xml...
IE version: 2.1.custom_pre-release_890bbb0bdbb3cd49e119e55b129e7a428ce2f9b0

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workinginvalidThis doesn't seem right

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions