Ray Edge Cluster — Distributed Edge AI Framework for Raspberry Pi and Jetson
Ray Edge Cluster is a lightweight distributed computing framework designed for Edge AI scenarios — running across Raspberry Pi clusters, Jetson Orin Nano, or any other ARM-based devices.
It leverages Ray for unified task scheduling, actor management, and resource-aware distributed execution.
Typical use cases:
- Distributed image / sensor data preprocessing on Raspberry Pi nodes
- GPU-accelerated inference on Jetson Orin Nano
- Federated or collaborative model training at the edge
- Edge → Cloud pipeline synchronization (via Ray Serve)
Ray Edge Cluster adopts a hybrid edge computing architecture —
where Raspberry Pi nodes handle CPU-side data preprocessing and orchestration,
while Jetson Orin Nano provides GPU acceleration for inference or training.
┌─────────────────────────────────────────┐
│ Edge Cluster Head │
│ Raspberry Pi 5 (16GB RAM) │
│------------------------------------------│
│ • Ray Head Node (Scheduler & Dashboard) │
│ • Task Orchestration & Monitoring │
│ • Log Collection / Aggregation │
└─────────────────────────────────────────┘
│ Gigabit LAN
┌──────────────────────────┴──────────────────────────┐
│ │
┌────────────────────────────┐ ┌────────────────────────────┐
│ Raspberry Pi Worker Nodes │ │ Jetson Orin Nano 8GB Node │
│ (CPU-based Edge Devices) │ │ (GPU-Accelerated Node) │
│----------------------------│ │----------------------------│
│ • Data Preprocessing │ │ • Deep Inference / Training│
│ • ETL / Sensor Fusion │ │ • CUDA / TensorRT Runtime │
│ • Lightweight Ray Tasks │ │ • Model Serving (Ray Serve)│
└────────────────────────────┘ └────────────────────────────┘
│ │
└──────────────────────────┬──────────────────────────┘
│
┌─────────────────────────────────────────┐
│ Optional Cloud Sync │
│ (e.g., MLflow / S3 / BigQuery) │
└─────────────────────────────────────────┘