diff --git a/README.md b/README.md
index 08f6d23f..2c8c88d5 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,41 @@
+### Change log [2025-07-30 18:04:17]
+1. Item Updated: `model_server_tester` (from version: `1.1.0` to `1.1.0`)
+2. Item Updated: `aggregate` (from version: `1.3.0` to `1.3.0`)
+3. Item Updated: `translate` (from version: `0.2.0` to `0.2.0`)
+4. Item Updated: `v2_model_server` (from version: `1.2.0` to `1.2.0`)
+5. Item Updated: `gen_class_data` (from version: `1.3.0` to `1.3.0`)
+6. Item Updated: `auto_trainer` (from version: `1.7.0` to `1.7.0`)
+7. Item Updated: `silero_vad` (from version: `1.4.0` to `1.4.0`)
+8. Item Updated: `text_to_audio_generator` (from version: `1.3.0` to `1.3.0`)
+9. Item Updated: `describe` (from version: `1.3.0` to `1.3.0`)
+10. Item Updated: `transcribe` (from version: `1.2.0` to `1.2.0`)
+11. Item Updated: `pyannote_audio` (from version: `1.3.0` to `1.3.0`)
+12. Item Updated: `test_classifier` (from version: `1.1.0` to `1.1.0`)
+13. Item Updated: `feature_selection` (from version: `1.6.0` to `1.6.0`)
+14. Item Updated: `tf2_serving` (from version: `1.1.0` to `1.1.0`)
+15. Item Updated: `azureml_serving` (from version: `1.1.0` to `1.1.0`)
+16. Item Updated: `sklearn_classifier` (from version: `1.1.1` to `1.1.1`)
+17. Item Updated: `azureml_utils` (from version: `1.4.0` to `1.4.0`)
+18. Item Updated: `describe_dask` (from version: `1.1.0` to `1.1.0`)
+19. Item Updated: `mlflow_utils` (from version: `1.1.0` to `1.1.0`)
+20. Item Updated: `github_utils` (from version: `1.1.0` to `1.1.0`)
+21. Item Updated: `v2_model_tester` (from version: `1.1.0` to `1.1.0`)
+22. Item Updated: `open_archive` (from version: `1.2.0` to `1.2.0`)
+23. Item Updated: `describe_spark` (from version: `1.1.0` to `1.1.0`)
+24. Item Updated: `sklearn_classifier_dask` (from version: `1.1.1` to `1.1.1`)
+25. Item Updated: `batch_inference_v2` (from version: `2.6.0` to `2.6.0`)
+26. Item Updated: `arc_to_parquet` (from version: `1.5.0` to `1.5.0`)
+27. Item Updated: `send_email` (from version: `1.2.0` to `1.2.0`)
+28. Item Updated: `structured_data_generator` (from version: `1.6.0` to `1.6.0`)
+29. Item Updated: `question_answering` (from version: `0.5.0` to `0.5.0`)
+30. Item Updated: `hugging_face_serving` (from version: `1.1.0` to `1.1.0`)
+31. Item Updated: `noise_reduction` (from version: `1.1.0` to `1.1.0`)
+32. Item Updated: `pii_recognizer` (from version: `0.4.0` to `0.4.0`)
+33. Item Updated: `onnx_utils` (from version: `1.3.0` to `1.3.0`)
+34. Item Updated: `batch_inference` (from version: `1.8.0` to `1.8.0`)
+35. Item Updated: `load_dataset` (from version: `1.2.0` to `1.2.0`)
+36. Item Updated: `model_server` (from version: `1.1.0` to `1.1.0`)
+
### Change log [2025-07-27 06:51:56]
1. Item Updated: `model_server_tester` (from version: `1.1.0` to `1.1.0`)
2. Item Updated: `aggregate` (from version: `1.3.0` to `1.3.0`)
diff --git a/catalog.json b/catalog.json
index dcaef5e3..d52626bc 100644
--- a/catalog.json
+++ b/catalog.json
@@ -1 +1 @@
-{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.6.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-generation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-generation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils", "deep-learning"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils", "deep-learning"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.4.0", "test_valid": true}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.4.0": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.4.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["genai", "model-serving"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["audio", "genai"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.2.0": {"apiVersion": "v1", "categories": ["audio", "genai"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.5.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.5.0": {"apiVersion": "v1", "categories": ["genai"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.5.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.4.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.4.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.6.0": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["genai", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.2.0", "test_valid": true}, "0.2.0": {"apiVersion": "v1", "categories": ["genai", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.2.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.6.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.6.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-generation", "audio"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.3.0": {"apiVersion": "v1", "categories": ["data-generation", "audio"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.4.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pyTorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.3.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "audio"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.7.0", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "audio"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.7.0", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "2.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
+{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.6.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-generation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-generation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils", "deep-learning"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils", "deep-learning"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.4.0", "test_valid": true}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.4.0": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.4.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["genai", "model-serving"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["audio", "genai"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.2.0": {"apiVersion": "v1", "categories": ["audio", "genai"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.5.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.5.0": {"apiVersion": "v1", "categories": ["genai"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.5.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.4.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.4.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.6.0": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["genai", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.2.0", "test_valid": true}, "0.2.0": {"apiVersion": "v1", "categories": ["genai", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.2.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.6.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.6.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-generation", "audio"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.3.0": {"apiVersion": "v1", "categories": ["data-generation", "audio"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.4.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pyTorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.3.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "audio"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.7.0", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "audio"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.7.0", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.6.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc40", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-generation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-generation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0-rc50", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils", "deep-learning"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils", "deep-learning"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.2", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["tqdm~=4.67.1", "tensorflow~=2.19.0", "tf_keras~=2.19.0", "torch~=2.6.0", "torchvision~=0.21.0", "onnx~=1.17.0", "onnxruntime~=1.19.2", "onnxoptimizer~=0.3.13", "onnxmltools~=1.13.0", "tf2onnx~=1.16.1", "plotly~=5.4.0"]}, "url": "", "version": "1.3.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.4.0", "test_valid": true}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.4.0": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.4.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["genai", "model-serving"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.5.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.5.0": {"apiVersion": "v1", "categories": ["genai"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.5.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["audio", "genai"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.2.0": {"apiVersion": "v1", "categories": ["audio", "genai"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.4.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.4.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.6.0": {"apiVersion": "v1", "categories": ["model-serving"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc51", "name": "batch_inference_v2", "platformVersion": "3.6.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.6.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["genai", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.2.0", "test_valid": true}, "0.2.0": {"apiVersion": "v1", "categories": ["genai", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.2.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.6.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.6.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-generation", "audio"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.3.0": {"apiVersion": "v1", "categories": ["data-generation", "audio"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torchaudio", "pydub"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.4.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.3.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "utils"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.8.0", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "audio"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.7.0", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "audio"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.7.0", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
diff --git a/functions/master/_static/mystnb.8ecb98da25f57f5357bf6f572d296f466b2cfe2517ffebfabe82451661e28f02.css b/functions/master/_static/mystnb.8ecb98da25f57f5357bf6f572d296f466b2cfe2517ffebfabe82451661e28f02.css
new file mode 100644
index 00000000..14edf629
--- /dev/null
+++ b/functions/master/_static/mystnb.8ecb98da25f57f5357bf6f572d296f466b2cfe2517ffebfabe82451661e28f02.css
@@ -0,0 +1,2474 @@
+/* Variables */
+:root {
+ /*
+ Following palettes are generated by using https://m2.material.io/design/color/the-color-system.html#tools-for-picking-colors
+ - neutral palette with #fcfcfc and danger palette with #ffdddd as base colors.
+ 50 means lightest, 900 means darkest; less used intermediate shades are omitted
+ but can be added when needed by accessing full palette from the above link.
+ */
+ --mystnb-neutral-palette-50: #fcfcfc;
+ --mystnb-neutral-palette-100: #f7f7f7;
+ --mystnb-neutral-palette-400: #cccccc;
+ --mystnb-neutral-palette-500: #afafaf;
+ --mystnb-neutral-palette-800: #505050;
+ --mystnb-neutral-palette-900: #2d2d2d;
+
+ --mystnb-danger-palette-50: #ffdddd;
+ --mystnb-danger-palette-100: #f5acad;
+ --mystnb-danger-palette-400: #c42029;
+ --mystnb-danger-palette-500: #b40008;
+ --mystnb-danger-palette-800: #850010;
+ --mystnb-danger-palette-900: #680010;
+
+ /* MyST-NB specific variables; colors should be logically picked from palettes */
+ --mystnb-source-bg-color: var(--mystnb-neutral-palette-100);
+ --mystnb-stdout-bg-color: var(--mystnb-neutral-palette-50);
+ --mystnb-stderr-bg-color: var(--mystnb-danger-palette-50);
+ --mystnb-traceback-bg-color: var(--mystnb-neutral-palette-50);
+ --mystnb-source-border-color: var(--mystnb-neutral-palette-400);
+ --mystnb-source-margin-color: green;
+ --mystnb-stdout-border-color: var(--mystnb-neutral-palette-100);
+ --mystnb-stderr-border-color: var(--mystnb-neutral-palette-100);
+ --mystnb-traceback-border-color: var(--mystnb-danger-palette-100);
+ --mystnb-hide-prompt-opacity: 70%;
+ --mystnb-source-border-radius: .4em;
+ --mystnb-source-border-width: 1px;
+ --mystnb-scrollbar-width: 0.3rem;
+ --mystnb-scrollbar-height: 0.3rem;
+ --mystnb-scrollbar-thumb-color: var(--mystnb-neutral-palette-400);
+ --mystnb-scrollbar-thumb-hover-color: var(--mystnb-neutral-palette-500);
+ --mystnb-scrollbar-thumb-border-radius: 0.25rem;
+}
+
+/* Override colors in dark theme */
+html[data-theme="dark"] {
+ --mystnb-source-bg-color: var(--mystnb-neutral-palette-800);
+ --mystnb-stdout-bg-color: var(--mystnb-neutral-palette-900);
+ --mystnb-stderr-bg-color: var(--mystnb-danger-palette-900);
+ --mystnb-traceback-bg-color: var(--mystnb-neutral-palette-900);
+ --mystnb-source-border-color: var(--mystnb-neutral-palette-500);
+ --mystnb-stdout-border-color: var(--mystnb-neutral-palette-800);
+ --mystnb-stderr-border-color: var(--mystnb-neutral-palette-800);
+ --mystnb-traceback-border-color: var(--mystnb-danger-palette-800);
+ --mystnb-scrollbar-thumb-color: var(--mystnb-neutral-palette-500);
+ --mystnb-scrollbar-thumb-hover-color: var(--mystnb-neutral-palette-400);
+}
+
+
+/* Whole cell */
+div.container.cell {
+ padding-left: 0;
+ margin-bottom: 1em;
+}
+
+/* Removing all background formatting so we can control at the div level */
+.cell_input div.highlight,
+.cell_output pre,
+.cell_input pre,
+.cell_output .output {
+ border: none;
+ box-shadow: none;
+}
+
+.cell_output .output pre,
+.cell_input pre {
+ margin: 0px;
+}
+
+/* Input cells */
+div.cell > div.cell_input {
+ padding-left: 0em;
+ padding-right: 0em;
+ border: var(--mystnb-source-border-width) var(--mystnb-source-border-color) solid;
+ background-color: var(--mystnb-source-bg-color);
+ border-left-color: var(--mystnb-source-margin-color);
+ border-left-width: medium;
+ border-radius: var(--mystnb-source-border-radius);
+}
+
+div.cell_input>div,
+div.cell_output div.output>div.highlight {
+ margin: 0em !important;
+ border: none !important;
+}
+
+/* All cell outputs */
+.cell_output {
+ padding-left: 1em;
+ padding-right: 0em;
+ margin-top: 1em;
+}
+
+/* Text outputs from cells */
+.cell_output .output.text_plain,
+.cell_output .output.traceback,
+.cell_output .output.stream,
+.cell_output .output.stderr {
+ margin-top: 1em;
+ margin-bottom: 0em;
+ box-shadow: none;
+}
+
+.cell_output .output.text_plain:not(:has(.highlight)),
+.cell_output .output.stream:not(:has(.highlight)) {
+ /* plain (or stream of) output, not containing a pygments-highlighted block */
+ background: var(--mystnb-stdout-bg-color);
+ border: 1px solid var(--mystnb-stdout-border-color);
+}
+
+.cell_output .output.stderr {
+ background: var(--mystnb-stderr-bg-color);
+ border: 1px solid var(--mystnb-stderr-border-color);
+}
+
+.cell_output .output.traceback {
+ background: var(--mystnb-traceback-bg-color);
+ border: 1px solid var(--mystnb-traceback-border-color);
+}
+
+/* --- Collapsible cell content --- */
+
+/*
+encourage summary container to blend in with its parent.
+p.admonition-title should hold the title styles.
+*/
+div.cell details.hide summary {
+ border-left: unset;
+ padding: inherit;
+ margin: inherit;
+ background-color: inherit;
+}
+
+/* Neighboring input/output elements - spacing, borders */
+div.cell details.hide.above-input + details.below-input,
+div.cell div.cell_input + details.below-input
+{
+ margin-top: 0;
+}
+
+div.cell details.hide.above-input:has(+ details.below-input),
+div.cell div.cell_input:has(+ details.below-input)
+{
+ margin-bottom: 0;
+}
+
+div.cell:has(> *:nth-child(2)) div.cell_input:first-child,
+div.cell:has(> *:nth-child(2)) details:first-child
+{
+ border-bottom-left-radius: 0;
+ border-bottom-right-radius: 0;
+}
+
+div.cell:has(> *:nth-child(2)) div.cell_input:last-child,
+div.cell:has(> *:nth-child(2)) details:last-child
+{
+ border-top-left-radius: 0;
+ border-top-right-radius: 0;
+}
+
+/* intra-label styles for collapsibles */
+div.cell.container details.hide.above-input>summary,
+div.cell.container details.hide.below-input>summary,
+div.cell.container details.hide.above-output>summary
+{
+ display: block;
+ border-left: none;
+}
+
+div.cell details.hide>summary>p.admonition-title {
+ display: list-item;
+ margin-bottom: 0;
+}
+
+div.cell details.hide:not([open]) {
+ padding-bottom: 0;
+}
+
+div.cell details.hide[open]>summary>p.collapsed {
+ display: none;
+}
+
+div.cell details.hide:not([open])>summary>p.expanded {
+ display: none;
+}
+
+@keyframes collapsed-fade-in {
+ 0% {
+ opacity: 0;
+ }
+
+ 100% {
+ opacity: 1;
+ }
+}
+div.cell details.hide[open]>summary~* {
+ -moz-animation: collapsed-fade-in 0.3s ease-in-out;
+ -webkit-animation: collapsed-fade-in 0.3s ease-in-out;
+ animation: collapsed-fade-in 0.3s ease-in-out;
+}
+
+/* Clear conflicting styles for details and admonitions set by some themes */
+div.cell details.admonition summary::before {
+ content: unset;
+}
+
+/* Math align to the left */
+.cell_output .MathJax_Display {
+ text-align: left !important;
+}
+
+/* Pandas tables. Pulled from the Jupyter / nbsphinx CSS */
+div.cell_output table {
+ border: none;
+ border-collapse: collapse;
+ border-spacing: 0;
+ color: black;
+ font-size: 1em;
+ table-layout: fixed;
+}
+
+div.cell_output thead {
+ border-bottom: 1px solid black;
+ vertical-align: bottom;
+}
+
+div.cell_output tr,
+div.cell_output th,
+div.cell_output td {
+ text-align: right;
+ vertical-align: middle;
+ padding: 0.5em 0.5em;
+ line-height: normal;
+ white-space: normal;
+ max-width: none;
+ border: none;
+}
+
+div.cell_output th {
+ font-weight: bold;
+}
+
+div.cell_output tbody tr:nth-child(odd) {
+ background: #f5f5f5;
+}
+
+div.cell_output tbody tr:hover {
+ background: rgba(66, 165, 245, 0.2);
+}
+
+/** source code line numbers **/
+span.linenos {
+ opacity: 0.5;
+}
+
+/* Inline text from `paste` operation */
+
+span.pasted-text {
+ font-weight: bold;
+}
+
+span.pasted-inline img {
+ max-height: 2em;
+}
+
+tbody span.pasted-inline img {
+ max-height: none;
+}
+
+
+/* Adding scroll bars if tags: output_scroll, scroll-output, and scroll-input
+ * On screens, we want to scroll, but on print show all
+ *
+ * It was before in https://github.com/executablebooks/sphinx-book-theme/blob/eb1b6baf098b27605e8f2b7b2979b17ebf1b9540/src/sphinx_book_theme/assets/styles/extensions/_myst-nb.scss
+*/
+div.cell:is(
+ .tag_output_scroll,
+ .tag_scroll-output,
+ .config_scroll_outputs
+ )
+ div.cell_output,
+div.cell.tag_scroll-input div.cell_input {
+ max-height: 24em;
+ overflow-y: auto;
+ max-width: 100%;
+ overflow-x: auto;
+}
+
+div.cell.config_scroll_outputs div.cell_output:has(img) {
+ /* If the output cell has image(s), allow it to take 90% of viewport height
+ but still bounded between 24em and 60em */
+ max-height: clamp(24em, 90vh, 60em);
+}
+
+/* Custom scrollbars */
+div.cell:is(
+ .tag_output_scroll,
+ .tag_scroll-output,
+ .config_scroll_outputs
+ )
+ div.cell_output::-webkit-scrollbar,
+div.cell.tag_scroll-input div.cell_input::-webkit-scrollbar {
+ width: var(--mystnb-scrollbar-width);
+ height: var(--mystnb-scrollbar-height);
+}
+
+div.cell:is(
+ .tag_output_scroll,
+ .tag_scroll-output,
+ .config_scroll_outputs
+ )
+ div.cell_output::-webkit-scrollbar-thumb,
+div.cell.tag_scroll-input div.cell_input::-webkit-scrollbar-thumb {
+ background: var(--mystnb-scrollbar-thumb-color);
+ border-radius: var(--mystnb-scrollbar-thumb-border-radius);
+}
+
+div.cell:is(
+ .tag_output_scroll,
+ .tag_scroll-output,
+ .config_scroll_outputs
+ )
+ div.cell_output::-webkit-scrollbar-thumb:hover,
+div.cell.tag_scroll-input div.cell_input::-webkit-scrollbar-thumb:hover {
+ background: var(--mystnb-scrollbar-thumb-hover-color);
+}
+
+/* In print mode, unset scroll styles */
+@media print {
+ div.cell:is(
+ .tag_output_scroll,
+ .tag_scroll-output,
+ .config_scroll_outputs
+ )
+ div.cell_output,
+ div.cell.tag_scroll-input div.cell_input {
+ max-height: unset;
+ overflow-y: visible;
+ max-width: unset;
+ overflow-x: visible;
+ }
+}
+
+/* Font colors for translated ANSI escape sequences
+Color values are copied from Jupyter Notebook
+https://github.com/jupyter/notebook/blob/52581f8eda9b319eb0390ac77fe5903c38f81e3e/notebook/static/notebook/less/ansicolors.less#L14-L21
+Background colors from
+https://nbsphinx.readthedocs.io/en/latest/code-cells.html#ANSI-Colors
+*/
+div.highlight .-Color-Bold {
+ font-weight: bold;
+}
+
+div.highlight .-Color[class*=-Black] {
+ color: #3E424D
+}
+
+div.highlight .-Color[class*=-Red] {
+ color: #E75C58
+}
+
+div.highlight .-Color[class*=-Green] {
+ color: #00A250
+}
+
+div.highlight .-Color[class*=-Yellow] {
+ color: #DDB62B
+}
+
+div.highlight .-Color[class*=-Blue] {
+ color: #208FFB
+}
+
+div.highlight .-Color[class*=-Magenta] {
+ color: #D160C4
+}
+
+div.highlight .-Color[class*=-Cyan] {
+ color: #60C6C8
+}
+
+div.highlight .-Color[class*=-White] {
+ color: #C5C1B4
+}
+
+div.highlight .-Color[class*=-BGBlack] {
+ background-color: #3E424D
+}
+
+div.highlight .-Color[class*=-BGRed] {
+ background-color: #E75C58
+}
+
+div.highlight .-Color[class*=-BGGreen] {
+ background-color: #00A250
+}
+
+div.highlight .-Color[class*=-BGYellow] {
+ background-color: #DDB62B
+}
+
+div.highlight .-Color[class*=-BGBlue] {
+ background-color: #208FFB
+}
+
+div.highlight .-Color[class*=-BGMagenta] {
+ background-color: #D160C4
+}
+
+div.highlight .-Color[class*=-BGCyan] {
+ background-color: #60C6C8
+}
+
+div.highlight .-Color[class*=-BGWhite] {
+ background-color: #C5C1B4
+}
+
+/* Font colors for 8-bit ANSI */
+
+div.highlight .-Color[class*=-C0] {
+ color: #000000
+}
+
+div.highlight .-Color[class*=-BGC0] {
+ background-color: #000000
+}
+
+div.highlight .-Color[class*=-C1] {
+ color: #800000
+}
+
+div.highlight .-Color[class*=-BGC1] {
+ background-color: #800000
+}
+
+div.highlight .-Color[class*=-C2] {
+ color: #008000
+}
+
+div.highlight .-Color[class*=-BGC2] {
+ background-color: #008000
+}
+
+div.highlight .-Color[class*=-C3] {
+ color: #808000
+}
+
+div.highlight .-Color[class*=-BGC3] {
+ background-color: #808000
+}
+
+div.highlight .-Color[class*=-C4] {
+ color: #000080
+}
+
+div.highlight .-Color[class*=-BGC4] {
+ background-color: #000080
+}
+
+div.highlight .-Color[class*=-C5] {
+ color: #800080
+}
+
+div.highlight .-Color[class*=-BGC5] {
+ background-color: #800080
+}
+
+div.highlight .-Color[class*=-C6] {
+ color: #008080
+}
+
+div.highlight .-Color[class*=-BGC6] {
+ background-color: #008080
+}
+
+div.highlight .-Color[class*=-C7] {
+ color: #C0C0C0
+}
+
+div.highlight .-Color[class*=-BGC7] {
+ background-color: #C0C0C0
+}
+
+div.highlight .-Color[class*=-C8] {
+ color: #808080
+}
+
+div.highlight .-Color[class*=-BGC8] {
+ background-color: #808080
+}
+
+div.highlight .-Color[class*=-C9] {
+ color: #FF0000
+}
+
+div.highlight .-Color[class*=-BGC9] {
+ background-color: #FF0000
+}
+
+div.highlight .-Color[class*=-C10] {
+ color: #00FF00
+}
+
+div.highlight .-Color[class*=-BGC10] {
+ background-color: #00FF00
+}
+
+div.highlight .-Color[class*=-C11] {
+ color: #FFFF00
+}
+
+div.highlight .-Color[class*=-BGC11] {
+ background-color: #FFFF00
+}
+
+div.highlight .-Color[class*=-C12] {
+ color: #0000FF
+}
+
+div.highlight .-Color[class*=-BGC12] {
+ background-color: #0000FF
+}
+
+div.highlight .-Color[class*=-C13] {
+ color: #FF00FF
+}
+
+div.highlight .-Color[class*=-BGC13] {
+ background-color: #FF00FF
+}
+
+div.highlight .-Color[class*=-C14] {
+ color: #00FFFF
+}
+
+div.highlight .-Color[class*=-BGC14] {
+ background-color: #00FFFF
+}
+
+div.highlight .-Color[class*=-C15] {
+ color: #FFFFFF
+}
+
+div.highlight .-Color[class*=-BGC15] {
+ background-color: #FFFFFF
+}
+
+div.highlight .-Color[class*=-C16] {
+ color: #000000
+}
+
+div.highlight .-Color[class*=-BGC16] {
+ background-color: #000000
+}
+
+div.highlight .-Color[class*=-C17] {
+ color: #00005F
+}
+
+div.highlight .-Color[class*=-BGC17] {
+ background-color: #00005F
+}
+
+div.highlight .-Color[class*=-C18] {
+ color: #000087
+}
+
+div.highlight .-Color[class*=-BGC18] {
+ background-color: #000087
+}
+
+div.highlight .-Color[class*=-C19] {
+ color: #0000AF
+}
+
+div.highlight .-Color[class*=-BGC19] {
+ background-color: #0000AF
+}
+
+div.highlight .-Color[class*=-C20] {
+ color: #0000D7
+}
+
+div.highlight .-Color[class*=-BGC20] {
+ background-color: #0000D7
+}
+
+div.highlight .-Color[class*=-C21] {
+ color: #0000FF
+}
+
+div.highlight .-Color[class*=-BGC21] {
+ background-color: #0000FF
+}
+
+div.highlight .-Color[class*=-C22] {
+ color: #005F00
+}
+
+div.highlight .-Color[class*=-BGC22] {
+ background-color: #005F00
+}
+
+div.highlight .-Color[class*=-C23] {
+ color: #005F5F
+}
+
+div.highlight .-Color[class*=-BGC23] {
+ background-color: #005F5F
+}
+
+div.highlight .-Color[class*=-C24] {
+ color: #005F87
+}
+
+div.highlight .-Color[class*=-BGC24] {
+ background-color: #005F87
+}
+
+div.highlight .-Color[class*=-C25] {
+ color: #005FAF
+}
+
+div.highlight .-Color[class*=-BGC25] {
+ background-color: #005FAF
+}
+
+div.highlight .-Color[class*=-C26] {
+ color: #005FD7
+}
+
+div.highlight .-Color[class*=-BGC26] {
+ background-color: #005FD7
+}
+
+div.highlight .-Color[class*=-C27] {
+ color: #005FFF
+}
+
+div.highlight .-Color[class*=-BGC27] {
+ background-color: #005FFF
+}
+
+div.highlight .-Color[class*=-C28] {
+ color: #008700
+}
+
+div.highlight .-Color[class*=-BGC28] {
+ background-color: #008700
+}
+
+div.highlight .-Color[class*=-C29] {
+ color: #00875F
+}
+
+div.highlight .-Color[class*=-BGC29] {
+ background-color: #00875F
+}
+
+div.highlight .-Color[class*=-C30] {
+ color: #008787
+}
+
+div.highlight .-Color[class*=-BGC30] {
+ background-color: #008787
+}
+
+div.highlight .-Color[class*=-C31] {
+ color: #0087AF
+}
+
+div.highlight .-Color[class*=-BGC31] {
+ background-color: #0087AF
+}
+
+div.highlight .-Color[class*=-C32] {
+ color: #0087D7
+}
+
+div.highlight .-Color[class*=-BGC32] {
+ background-color: #0087D7
+}
+
+div.highlight .-Color[class*=-C33] {
+ color: #0087FF
+}
+
+div.highlight .-Color[class*=-BGC33] {
+ background-color: #0087FF
+}
+
+div.highlight .-Color[class*=-C34] {
+ color: #00AF00
+}
+
+div.highlight .-Color[class*=-BGC34] {
+ background-color: #00AF00
+}
+
+div.highlight .-Color[class*=-C35] {
+ color: #00AF5F
+}
+
+div.highlight .-Color[class*=-BGC35] {
+ background-color: #00AF5F
+}
+
+div.highlight .-Color[class*=-C36] {
+ color: #00AF87
+}
+
+div.highlight .-Color[class*=-BGC36] {
+ background-color: #00AF87
+}
+
+div.highlight .-Color[class*=-C37] {
+ color: #00AFAF
+}
+
+div.highlight .-Color[class*=-BGC37] {
+ background-color: #00AFAF
+}
+
+div.highlight .-Color[class*=-C38] {
+ color: #00AFD7
+}
+
+div.highlight .-Color[class*=-BGC38] {
+ background-color: #00AFD7
+}
+
+div.highlight .-Color[class*=-C39] {
+ color: #00AFFF
+}
+
+div.highlight .-Color[class*=-BGC39] {
+ background-color: #00AFFF
+}
+
+div.highlight .-Color[class*=-C40] {
+ color: #00D700
+}
+
+div.highlight .-Color[class*=-BGC40] {
+ background-color: #00D700
+}
+
+div.highlight .-Color[class*=-C41] {
+ color: #00D75F
+}
+
+div.highlight .-Color[class*=-BGC41] {
+ background-color: #00D75F
+}
+
+div.highlight .-Color[class*=-C42] {
+ color: #00D787
+}
+
+div.highlight .-Color[class*=-BGC42] {
+ background-color: #00D787
+}
+
+div.highlight .-Color[class*=-C43] {
+ color: #00D7AF
+}
+
+div.highlight .-Color[class*=-BGC43] {
+ background-color: #00D7AF
+}
+
+div.highlight .-Color[class*=-C44] {
+ color: #00D7D7
+}
+
+div.highlight .-Color[class*=-BGC44] {
+ background-color: #00D7D7
+}
+
+div.highlight .-Color[class*=-C45] {
+ color: #00D7FF
+}
+
+div.highlight .-Color[class*=-BGC45] {
+ background-color: #00D7FF
+}
+
+div.highlight .-Color[class*=-C46] {
+ color: #00FF00
+}
+
+div.highlight .-Color[class*=-BGC46] {
+ background-color: #00FF00
+}
+
+div.highlight .-Color[class*=-C47] {
+ color: #00FF5F
+}
+
+div.highlight .-Color[class*=-BGC47] {
+ background-color: #00FF5F
+}
+
+div.highlight .-Color[class*=-C48] {
+ color: #00FF87
+}
+
+div.highlight .-Color[class*=-BGC48] {
+ background-color: #00FF87
+}
+
+div.highlight .-Color[class*=-C49] {
+ color: #00FFAF
+}
+
+div.highlight .-Color[class*=-BGC49] {
+ background-color: #00FFAF
+}
+
+div.highlight .-Color[class*=-C50] {
+ color: #00FFD7
+}
+
+div.highlight .-Color[class*=-BGC50] {
+ background-color: #00FFD7
+}
+
+div.highlight .-Color[class*=-C51] {
+ color: #00FFFF
+}
+
+div.highlight .-Color[class*=-BGC51] {
+ background-color: #00FFFF
+}
+
+div.highlight .-Color[class*=-C52] {
+ color: #5F0000
+}
+
+div.highlight .-Color[class*=-BGC52] {
+ background-color: #5F0000
+}
+
+div.highlight .-Color[class*=-C53] {
+ color: #5F005F
+}
+
+div.highlight .-Color[class*=-BGC53] {
+ background-color: #5F005F
+}
+
+div.highlight .-Color[class*=-C54] {
+ color: #5F0087
+}
+
+div.highlight .-Color[class*=-BGC54] {
+ background-color: #5F0087
+}
+
+div.highlight .-Color[class*=-C55] {
+ color: #5F00AF
+}
+
+div.highlight .-Color[class*=-BGC55] {
+ background-color: #5F00AF
+}
+
+div.highlight .-Color[class*=-C56] {
+ color: #5F00D7
+}
+
+div.highlight .-Color[class*=-BGC56] {
+ background-color: #5F00D7
+}
+
+div.highlight .-Color[class*=-C57] {
+ color: #5F00FF
+}
+
+div.highlight .-Color[class*=-BGC57] {
+ background-color: #5F00FF
+}
+
+div.highlight .-Color[class*=-C58] {
+ color: #5F5F00
+}
+
+div.highlight .-Color[class*=-BGC58] {
+ background-color: #5F5F00
+}
+
+div.highlight .-Color[class*=-C59] {
+ color: #5F5F5F
+}
+
+div.highlight .-Color[class*=-BGC59] {
+ background-color: #5F5F5F
+}
+
+div.highlight .-Color[class*=-C60] {
+ color: #5F5F87
+}
+
+div.highlight .-Color[class*=-BGC60] {
+ background-color: #5F5F87
+}
+
+div.highlight .-Color[class*=-C61] {
+ color: #5F5FAF
+}
+
+div.highlight .-Color[class*=-BGC61] {
+ background-color: #5F5FAF
+}
+
+div.highlight .-Color[class*=-C62] {
+ color: #5F5FD7
+}
+
+div.highlight .-Color[class*=-BGC62] {
+ background-color: #5F5FD7
+}
+
+div.highlight .-Color[class*=-C63] {
+ color: #5F5FFF
+}
+
+div.highlight .-Color[class*=-BGC63] {
+ background-color: #5F5FFF
+}
+
+div.highlight .-Color[class*=-C64] {
+ color: #5F8700
+}
+
+div.highlight .-Color[class*=-BGC64] {
+ background-color: #5F8700
+}
+
+div.highlight .-Color[class*=-C65] {
+ color: #5F875F
+}
+
+div.highlight .-Color[class*=-BGC65] {
+ background-color: #5F875F
+}
+
+div.highlight .-Color[class*=-C66] {
+ color: #5F8787
+}
+
+div.highlight .-Color[class*=-BGC66] {
+ background-color: #5F8787
+}
+
+div.highlight .-Color[class*=-C67] {
+ color: #5F87AF
+}
+
+div.highlight .-Color[class*=-BGC67] {
+ background-color: #5F87AF
+}
+
+div.highlight .-Color[class*=-C68] {
+ color: #5F87D7
+}
+
+div.highlight .-Color[class*=-BGC68] {
+ background-color: #5F87D7
+}
+
+div.highlight .-Color[class*=-C69] {
+ color: #5F87FF
+}
+
+div.highlight .-Color[class*=-BGC69] {
+ background-color: #5F87FF
+}
+
+div.highlight .-Color[class*=-C70] {
+ color: #5FAF00
+}
+
+div.highlight .-Color[class*=-BGC70] {
+ background-color: #5FAF00
+}
+
+div.highlight .-Color[class*=-C71] {
+ color: #5FAF5F
+}
+
+div.highlight .-Color[class*=-BGC71] {
+ background-color: #5FAF5F
+}
+
+div.highlight .-Color[class*=-C72] {
+ color: #5FAF87
+}
+
+div.highlight .-Color[class*=-BGC72] {
+ background-color: #5FAF87
+}
+
+div.highlight .-Color[class*=-C73] {
+ color: #5FAFAF
+}
+
+div.highlight .-Color[class*=-BGC73] {
+ background-color: #5FAFAF
+}
+
+div.highlight .-Color[class*=-C74] {
+ color: #5FAFD7
+}
+
+div.highlight .-Color[class*=-BGC74] {
+ background-color: #5FAFD7
+}
+
+div.highlight .-Color[class*=-C75] {
+ color: #5FAFFF
+}
+
+div.highlight .-Color[class*=-BGC75] {
+ background-color: #5FAFFF
+}
+
+div.highlight .-Color[class*=-C76] {
+ color: #5FD700
+}
+
+div.highlight .-Color[class*=-BGC76] {
+ background-color: #5FD700
+}
+
+div.highlight .-Color[class*=-C77] {
+ color: #5FD75F
+}
+
+div.highlight .-Color[class*=-BGC77] {
+ background-color: #5FD75F
+}
+
+div.highlight .-Color[class*=-C78] {
+ color: #5FD787
+}
+
+div.highlight .-Color[class*=-BGC78] {
+ background-color: #5FD787
+}
+
+div.highlight .-Color[class*=-C79] {
+ color: #5FD7AF
+}
+
+div.highlight .-Color[class*=-BGC79] {
+ background-color: #5FD7AF
+}
+
+div.highlight .-Color[class*=-C80] {
+ color: #5FD7D7
+}
+
+div.highlight .-Color[class*=-BGC80] {
+ background-color: #5FD7D7
+}
+
+div.highlight .-Color[class*=-C81] {
+ color: #5FD7FF
+}
+
+div.highlight .-Color[class*=-BGC81] {
+ background-color: #5FD7FF
+}
+
+div.highlight .-Color[class*=-C82] {
+ color: #5FFF00
+}
+
+div.highlight .-Color[class*=-BGC82] {
+ background-color: #5FFF00
+}
+
+div.highlight .-Color[class*=-C83] {
+ color: #5FFF5F
+}
+
+div.highlight .-Color[class*=-BGC83] {
+ background-color: #5FFF5F
+}
+
+div.highlight .-Color[class*=-C84] {
+ color: #5FFF87
+}
+
+div.highlight .-Color[class*=-BGC84] {
+ background-color: #5FFF87
+}
+
+div.highlight .-Color[class*=-C85] {
+ color: #5FFFAF
+}
+
+div.highlight .-Color[class*=-BGC85] {
+ background-color: #5FFFAF
+}
+
+div.highlight .-Color[class*=-C86] {
+ color: #5FFFD7
+}
+
+div.highlight .-Color[class*=-BGC86] {
+ background-color: #5FFFD7
+}
+
+div.highlight .-Color[class*=-C87] {
+ color: #5FFFFF
+}
+
+div.highlight .-Color[class*=-BGC87] {
+ background-color: #5FFFFF
+}
+
+div.highlight .-Color[class*=-C88] {
+ color: #870000
+}
+
+div.highlight .-Color[class*=-BGC88] {
+ background-color: #870000
+}
+
+div.highlight .-Color[class*=-C89] {
+ color: #87005F
+}
+
+div.highlight .-Color[class*=-BGC89] {
+ background-color: #87005F
+}
+
+div.highlight .-Color[class*=-C90] {
+ color: #870087
+}
+
+div.highlight .-Color[class*=-BGC90] {
+ background-color: #870087
+}
+
+div.highlight .-Color[class*=-C91] {
+ color: #8700AF
+}
+
+div.highlight .-Color[class*=-BGC91] {
+ background-color: #8700AF
+}
+
+div.highlight .-Color[class*=-C92] {
+ color: #8700D7
+}
+
+div.highlight .-Color[class*=-BGC92] {
+ background-color: #8700D7
+}
+
+div.highlight .-Color[class*=-C93] {
+ color: #8700FF
+}
+
+div.highlight .-Color[class*=-BGC93] {
+ background-color: #8700FF
+}
+
+div.highlight .-Color[class*=-C94] {
+ color: #875F00
+}
+
+div.highlight .-Color[class*=-BGC94] {
+ background-color: #875F00
+}
+
+div.highlight .-Color[class*=-C95] {
+ color: #875F5F
+}
+
+div.highlight .-Color[class*=-BGC95] {
+ background-color: #875F5F
+}
+
+div.highlight .-Color[class*=-C96] {
+ color: #875F87
+}
+
+div.highlight .-Color[class*=-BGC96] {
+ background-color: #875F87
+}
+
+div.highlight .-Color[class*=-C97] {
+ color: #875FAF
+}
+
+div.highlight .-Color[class*=-BGC97] {
+ background-color: #875FAF
+}
+
+div.highlight .-Color[class*=-C98] {
+ color: #875FD7
+}
+
+div.highlight .-Color[class*=-BGC98] {
+ background-color: #875FD7
+}
+
+div.highlight .-Color[class*=-C99] {
+ color: #875FFF
+}
+
+div.highlight .-Color[class*=-BGC99] {
+ background-color: #875FFF
+}
+
+div.highlight .-Color[class*=-C100] {
+ color: #878700
+}
+
+div.highlight .-Color[class*=-BGC100] {
+ background-color: #878700
+}
+
+div.highlight .-Color[class*=-C101] {
+ color: #87875F
+}
+
+div.highlight .-Color[class*=-BGC101] {
+ background-color: #87875F
+}
+
+div.highlight .-Color[class*=-C102] {
+ color: #878787
+}
+
+div.highlight .-Color[class*=-BGC102] {
+ background-color: #878787
+}
+
+div.highlight .-Color[class*=-C103] {
+ color: #8787AF
+}
+
+div.highlight .-Color[class*=-BGC103] {
+ background-color: #8787AF
+}
+
+div.highlight .-Color[class*=-C104] {
+ color: #8787D7
+}
+
+div.highlight .-Color[class*=-BGC104] {
+ background-color: #8787D7
+}
+
+div.highlight .-Color[class*=-C105] {
+ color: #8787FF
+}
+
+div.highlight .-Color[class*=-BGC105] {
+ background-color: #8787FF
+}
+
+div.highlight .-Color[class*=-C106] {
+ color: #87AF00
+}
+
+div.highlight .-Color[class*=-BGC106] {
+ background-color: #87AF00
+}
+
+div.highlight .-Color[class*=-C107] {
+ color: #87AF5F
+}
+
+div.highlight .-Color[class*=-BGC107] {
+ background-color: #87AF5F
+}
+
+div.highlight .-Color[class*=-C108] {
+ color: #87AF87
+}
+
+div.highlight .-Color[class*=-BGC108] {
+ background-color: #87AF87
+}
+
+div.highlight .-Color[class*=-C109] {
+ color: #87AFAF
+}
+
+div.highlight .-Color[class*=-BGC109] {
+ background-color: #87AFAF
+}
+
+div.highlight .-Color[class*=-C110] {
+ color: #87AFD7
+}
+
+div.highlight .-Color[class*=-BGC110] {
+ background-color: #87AFD7
+}
+
+div.highlight .-Color[class*=-C111] {
+ color: #87AFFF
+}
+
+div.highlight .-Color[class*=-BGC111] {
+ background-color: #87AFFF
+}
+
+div.highlight .-Color[class*=-C112] {
+ color: #87D700
+}
+
+div.highlight .-Color[class*=-BGC112] {
+ background-color: #87D700
+}
+
+div.highlight .-Color[class*=-C113] {
+ color: #87D75F
+}
+
+div.highlight .-Color[class*=-BGC113] {
+ background-color: #87D75F
+}
+
+div.highlight .-Color[class*=-C114] {
+ color: #87D787
+}
+
+div.highlight .-Color[class*=-BGC114] {
+ background-color: #87D787
+}
+
+div.highlight .-Color[class*=-C115] {
+ color: #87D7AF
+}
+
+div.highlight .-Color[class*=-BGC115] {
+ background-color: #87D7AF
+}
+
+div.highlight .-Color[class*=-C116] {
+ color: #87D7D7
+}
+
+div.highlight .-Color[class*=-BGC116] {
+ background-color: #87D7D7
+}
+
+div.highlight .-Color[class*=-C117] {
+ color: #87D7FF
+}
+
+div.highlight .-Color[class*=-BGC117] {
+ background-color: #87D7FF
+}
+
+div.highlight .-Color[class*=-C118] {
+ color: #87FF00
+}
+
+div.highlight .-Color[class*=-BGC118] {
+ background-color: #87FF00
+}
+
+div.highlight .-Color[class*=-C119] {
+ color: #87FF5F
+}
+
+div.highlight .-Color[class*=-BGC119] {
+ background-color: #87FF5F
+}
+
+div.highlight .-Color[class*=-C120] {
+ color: #87FF87
+}
+
+div.highlight .-Color[class*=-BGC120] {
+ background-color: #87FF87
+}
+
+div.highlight .-Color[class*=-C121] {
+ color: #87FFAF
+}
+
+div.highlight .-Color[class*=-BGC121] {
+ background-color: #87FFAF
+}
+
+div.highlight .-Color[class*=-C122] {
+ color: #87FFD7
+}
+
+div.highlight .-Color[class*=-BGC122] {
+ background-color: #87FFD7
+}
+
+div.highlight .-Color[class*=-C123] {
+ color: #87FFFF
+}
+
+div.highlight .-Color[class*=-BGC123] {
+ background-color: #87FFFF
+}
+
+div.highlight .-Color[class*=-C124] {
+ color: #AF0000
+}
+
+div.highlight .-Color[class*=-BGC124] {
+ background-color: #AF0000
+}
+
+div.highlight .-Color[class*=-C125] {
+ color: #AF005F
+}
+
+div.highlight .-Color[class*=-BGC125] {
+ background-color: #AF005F
+}
+
+div.highlight .-Color[class*=-C126] {
+ color: #AF0087
+}
+
+div.highlight .-Color[class*=-BGC126] {
+ background-color: #AF0087
+}
+
+div.highlight .-Color[class*=-C127] {
+ color: #AF00AF
+}
+
+div.highlight .-Color[class*=-BGC127] {
+ background-color: #AF00AF
+}
+
+div.highlight .-Color[class*=-C128] {
+ color: #AF00D7
+}
+
+div.highlight .-Color[class*=-BGC128] {
+ background-color: #AF00D7
+}
+
+div.highlight .-Color[class*=-C129] {
+ color: #AF00FF
+}
+
+div.highlight .-Color[class*=-BGC129] {
+ background-color: #AF00FF
+}
+
+div.highlight .-Color[class*=-C130] {
+ color: #AF5F00
+}
+
+div.highlight .-Color[class*=-BGC130] {
+ background-color: #AF5F00
+}
+
+div.highlight .-Color[class*=-C131] {
+ color: #AF5F5F
+}
+
+div.highlight .-Color[class*=-BGC131] {
+ background-color: #AF5F5F
+}
+
+div.highlight .-Color[class*=-C132] {
+ color: #AF5F87
+}
+
+div.highlight .-Color[class*=-BGC132] {
+ background-color: #AF5F87
+}
+
+div.highlight .-Color[class*=-C133] {
+ color: #AF5FAF
+}
+
+div.highlight .-Color[class*=-BGC133] {
+ background-color: #AF5FAF
+}
+
+div.highlight .-Color[class*=-C134] {
+ color: #AF5FD7
+}
+
+div.highlight .-Color[class*=-BGC134] {
+ background-color: #AF5FD7
+}
+
+div.highlight .-Color[class*=-C135] {
+ color: #AF5FFF
+}
+
+div.highlight .-Color[class*=-BGC135] {
+ background-color: #AF5FFF
+}
+
+div.highlight .-Color[class*=-C136] {
+ color: #AF8700
+}
+
+div.highlight .-Color[class*=-BGC136] {
+ background-color: #AF8700
+}
+
+div.highlight .-Color[class*=-C137] {
+ color: #AF875F
+}
+
+div.highlight .-Color[class*=-BGC137] {
+ background-color: #AF875F
+}
+
+div.highlight .-Color[class*=-C138] {
+ color: #AF8787
+}
+
+div.highlight .-Color[class*=-BGC138] {
+ background-color: #AF8787
+}
+
+div.highlight .-Color[class*=-C139] {
+ color: #AF87AF
+}
+
+div.highlight .-Color[class*=-BGC139] {
+ background-color: #AF87AF
+}
+
+div.highlight .-Color[class*=-C140] {
+ color: #AF87D7
+}
+
+div.highlight .-Color[class*=-BGC140] {
+ background-color: #AF87D7
+}
+
+div.highlight .-Color[class*=-C141] {
+ color: #AF87FF
+}
+
+div.highlight .-Color[class*=-BGC141] {
+ background-color: #AF87FF
+}
+
+div.highlight .-Color[class*=-C142] {
+ color: #AFAF00
+}
+
+div.highlight .-Color[class*=-BGC142] {
+ background-color: #AFAF00
+}
+
+div.highlight .-Color[class*=-C143] {
+ color: #AFAF5F
+}
+
+div.highlight .-Color[class*=-BGC143] {
+ background-color: #AFAF5F
+}
+
+div.highlight .-Color[class*=-C144] {
+ color: #AFAF87
+}
+
+div.highlight .-Color[class*=-BGC144] {
+ background-color: #AFAF87
+}
+
+div.highlight .-Color[class*=-C145] {
+ color: #AFAFAF
+}
+
+div.highlight .-Color[class*=-BGC145] {
+ background-color: #AFAFAF
+}
+
+div.highlight .-Color[class*=-C146] {
+ color: #AFAFD7
+}
+
+div.highlight .-Color[class*=-BGC146] {
+ background-color: #AFAFD7
+}
+
+div.highlight .-Color[class*=-C147] {
+ color: #AFAFFF
+}
+
+div.highlight .-Color[class*=-BGC147] {
+ background-color: #AFAFFF
+}
+
+div.highlight .-Color[class*=-C148] {
+ color: #AFD700
+}
+
+div.highlight .-Color[class*=-BGC148] {
+ background-color: #AFD700
+}
+
+div.highlight .-Color[class*=-C149] {
+ color: #AFD75F
+}
+
+div.highlight .-Color[class*=-BGC149] {
+ background-color: #AFD75F
+}
+
+div.highlight .-Color[class*=-C150] {
+ color: #AFD787
+}
+
+div.highlight .-Color[class*=-BGC150] {
+ background-color: #AFD787
+}
+
+div.highlight .-Color[class*=-C151] {
+ color: #AFD7AF
+}
+
+div.highlight .-Color[class*=-BGC151] {
+ background-color: #AFD7AF
+}
+
+div.highlight .-Color[class*=-C152] {
+ color: #AFD7D7
+}
+
+div.highlight .-Color[class*=-BGC152] {
+ background-color: #AFD7D7
+}
+
+div.highlight .-Color[class*=-C153] {
+ color: #AFD7FF
+}
+
+div.highlight .-Color[class*=-BGC153] {
+ background-color: #AFD7FF
+}
+
+div.highlight .-Color[class*=-C154] {
+ color: #AFFF00
+}
+
+div.highlight .-Color[class*=-BGC154] {
+ background-color: #AFFF00
+}
+
+div.highlight .-Color[class*=-C155] {
+ color: #AFFF5F
+}
+
+div.highlight .-Color[class*=-BGC155] {
+ background-color: #AFFF5F
+}
+
+div.highlight .-Color[class*=-C156] {
+ color: #AFFF87
+}
+
+div.highlight .-Color[class*=-BGC156] {
+ background-color: #AFFF87
+}
+
+div.highlight .-Color[class*=-C157] {
+ color: #AFFFAF
+}
+
+div.highlight .-Color[class*=-BGC157] {
+ background-color: #AFFFAF
+}
+
+div.highlight .-Color[class*=-C158] {
+ color: #AFFFD7
+}
+
+div.highlight .-Color[class*=-BGC158] {
+ background-color: #AFFFD7
+}
+
+div.highlight .-Color[class*=-C159] {
+ color: #AFFFFF
+}
+
+div.highlight .-Color[class*=-BGC159] {
+ background-color: #AFFFFF
+}
+
+div.highlight .-Color[class*=-C160] {
+ color: #D70000
+}
+
+div.highlight .-Color[class*=-BGC160] {
+ background-color: #D70000
+}
+
+div.highlight .-Color[class*=-C161] {
+ color: #D7005F
+}
+
+div.highlight .-Color[class*=-BGC161] {
+ background-color: #D7005F
+}
+
+div.highlight .-Color[class*=-C162] {
+ color: #D70087
+}
+
+div.highlight .-Color[class*=-BGC162] {
+ background-color: #D70087
+}
+
+div.highlight .-Color[class*=-C163] {
+ color: #D700AF
+}
+
+div.highlight .-Color[class*=-BGC163] {
+ background-color: #D700AF
+}
+
+div.highlight .-Color[class*=-C164] {
+ color: #D700D7
+}
+
+div.highlight .-Color[class*=-BGC164] {
+ background-color: #D700D7
+}
+
+div.highlight .-Color[class*=-C165] {
+ color: #D700FF
+}
+
+div.highlight .-Color[class*=-BGC165] {
+ background-color: #D700FF
+}
+
+div.highlight .-Color[class*=-C166] {
+ color: #D75F00
+}
+
+div.highlight .-Color[class*=-BGC166] {
+ background-color: #D75F00
+}
+
+div.highlight .-Color[class*=-C167] {
+ color: #D75F5F
+}
+
+div.highlight .-Color[class*=-BGC167] {
+ background-color: #D75F5F
+}
+
+div.highlight .-Color[class*=-C168] {
+ color: #D75F87
+}
+
+div.highlight .-Color[class*=-BGC168] {
+ background-color: #D75F87
+}
+
+div.highlight .-Color[class*=-C169] {
+ color: #D75FAF
+}
+
+div.highlight .-Color[class*=-BGC169] {
+ background-color: #D75FAF
+}
+
+div.highlight .-Color[class*=-C170] {
+ color: #D75FD7
+}
+
+div.highlight .-Color[class*=-BGC170] {
+ background-color: #D75FD7
+}
+
+div.highlight .-Color[class*=-C171] {
+ color: #D75FFF
+}
+
+div.highlight .-Color[class*=-BGC171] {
+ background-color: #D75FFF
+}
+
+div.highlight .-Color[class*=-C172] {
+ color: #D78700
+}
+
+div.highlight .-Color[class*=-BGC172] {
+ background-color: #D78700
+}
+
+div.highlight .-Color[class*=-C173] {
+ color: #D7875F
+}
+
+div.highlight .-Color[class*=-BGC173] {
+ background-color: #D7875F
+}
+
+div.highlight .-Color[class*=-C174] {
+ color: #D78787
+}
+
+div.highlight .-Color[class*=-BGC174] {
+ background-color: #D78787
+}
+
+div.highlight .-Color[class*=-C175] {
+ color: #D787AF
+}
+
+div.highlight .-Color[class*=-BGC175] {
+ background-color: #D787AF
+}
+
+div.highlight .-Color[class*=-C176] {
+ color: #D787D7
+}
+
+div.highlight .-Color[class*=-BGC176] {
+ background-color: #D787D7
+}
+
+div.highlight .-Color[class*=-C177] {
+ color: #D787FF
+}
+
+div.highlight .-Color[class*=-BGC177] {
+ background-color: #D787FF
+}
+
+div.highlight .-Color[class*=-C178] {
+ color: #D7AF00
+}
+
+div.highlight .-Color[class*=-BGC178] {
+ background-color: #D7AF00
+}
+
+div.highlight .-Color[class*=-C179] {
+ color: #D7AF5F
+}
+
+div.highlight .-Color[class*=-BGC179] {
+ background-color: #D7AF5F
+}
+
+div.highlight .-Color[class*=-C180] {
+ color: #D7AF87
+}
+
+div.highlight .-Color[class*=-BGC180] {
+ background-color: #D7AF87
+}
+
+div.highlight .-Color[class*=-C181] {
+ color: #D7AFAF
+}
+
+div.highlight .-Color[class*=-BGC181] {
+ background-color: #D7AFAF
+}
+
+div.highlight .-Color[class*=-C182] {
+ color: #D7AFD7
+}
+
+div.highlight .-Color[class*=-BGC182] {
+ background-color: #D7AFD7
+}
+
+div.highlight .-Color[class*=-C183] {
+ color: #D7AFFF
+}
+
+div.highlight .-Color[class*=-BGC183] {
+ background-color: #D7AFFF
+}
+
+div.highlight .-Color[class*=-C184] {
+ color: #D7D700
+}
+
+div.highlight .-Color[class*=-BGC184] {
+ background-color: #D7D700
+}
+
+div.highlight .-Color[class*=-C185] {
+ color: #D7D75F
+}
+
+div.highlight .-Color[class*=-BGC185] {
+ background-color: #D7D75F
+}
+
+div.highlight .-Color[class*=-C186] {
+ color: #D7D787
+}
+
+div.highlight .-Color[class*=-BGC186] {
+ background-color: #D7D787
+}
+
+div.highlight .-Color[class*=-C187] {
+ color: #D7D7AF
+}
+
+div.highlight .-Color[class*=-BGC187] {
+ background-color: #D7D7AF
+}
+
+div.highlight .-Color[class*=-C188] {
+ color: #D7D7D7
+}
+
+div.highlight .-Color[class*=-BGC188] {
+ background-color: #D7D7D7
+}
+
+div.highlight .-Color[class*=-C189] {
+ color: #D7D7FF
+}
+
+div.highlight .-Color[class*=-BGC189] {
+ background-color: #D7D7FF
+}
+
+div.highlight .-Color[class*=-C190] {
+ color: #D7FF00
+}
+
+div.highlight .-Color[class*=-BGC190] {
+ background-color: #D7FF00
+}
+
+div.highlight .-Color[class*=-C191] {
+ color: #D7FF5F
+}
+
+div.highlight .-Color[class*=-BGC191] {
+ background-color: #D7FF5F
+}
+
+div.highlight .-Color[class*=-C192] {
+ color: #D7FF87
+}
+
+div.highlight .-Color[class*=-BGC192] {
+ background-color: #D7FF87
+}
+
+div.highlight .-Color[class*=-C193] {
+ color: #D7FFAF
+}
+
+div.highlight .-Color[class*=-BGC193] {
+ background-color: #D7FFAF
+}
+
+div.highlight .-Color[class*=-C194] {
+ color: #D7FFD7
+}
+
+div.highlight .-Color[class*=-BGC194] {
+ background-color: #D7FFD7
+}
+
+div.highlight .-Color[class*=-C195] {
+ color: #D7FFFF
+}
+
+div.highlight .-Color[class*=-BGC195] {
+ background-color: #D7FFFF
+}
+
+div.highlight .-Color[class*=-C196] {
+ color: #FF0000
+}
+
+div.highlight .-Color[class*=-BGC196] {
+ background-color: #FF0000
+}
+
+div.highlight .-Color[class*=-C197] {
+ color: #FF005F
+}
+
+div.highlight .-Color[class*=-BGC197] {
+ background-color: #FF005F
+}
+
+div.highlight .-Color[class*=-C198] {
+ color: #FF0087
+}
+
+div.highlight .-Color[class*=-BGC198] {
+ background-color: #FF0087
+}
+
+div.highlight .-Color[class*=-C199] {
+ color: #FF00AF
+}
+
+div.highlight .-Color[class*=-BGC199] {
+ background-color: #FF00AF
+}
+
+div.highlight .-Color[class*=-C200] {
+ color: #FF00D7
+}
+
+div.highlight .-Color[class*=-BGC200] {
+ background-color: #FF00D7
+}
+
+div.highlight .-Color[class*=-C201] {
+ color: #FF00FF
+}
+
+div.highlight .-Color[class*=-BGC201] {
+ background-color: #FF00FF
+}
+
+div.highlight .-Color[class*=-C202] {
+ color: #FF5F00
+}
+
+div.highlight .-Color[class*=-BGC202] {
+ background-color: #FF5F00
+}
+
+div.highlight .-Color[class*=-C203] {
+ color: #FF5F5F
+}
+
+div.highlight .-Color[class*=-BGC203] {
+ background-color: #FF5F5F
+}
+
+div.highlight .-Color[class*=-C204] {
+ color: #FF5F87
+}
+
+div.highlight .-Color[class*=-BGC204] {
+ background-color: #FF5F87
+}
+
+div.highlight .-Color[class*=-C205] {
+ color: #FF5FAF
+}
+
+div.highlight .-Color[class*=-BGC205] {
+ background-color: #FF5FAF
+}
+
+div.highlight .-Color[class*=-C206] {
+ color: #FF5FD7
+}
+
+div.highlight .-Color[class*=-BGC206] {
+ background-color: #FF5FD7
+}
+
+div.highlight .-Color[class*=-C207] {
+ color: #FF5FFF
+}
+
+div.highlight .-Color[class*=-BGC207] {
+ background-color: #FF5FFF
+}
+
+div.highlight .-Color[class*=-C208] {
+ color: #FF8700
+}
+
+div.highlight .-Color[class*=-BGC208] {
+ background-color: #FF8700
+}
+
+div.highlight .-Color[class*=-C209] {
+ color: #FF875F
+}
+
+div.highlight .-Color[class*=-BGC209] {
+ background-color: #FF875F
+}
+
+div.highlight .-Color[class*=-C210] {
+ color: #FF8787
+}
+
+div.highlight .-Color[class*=-BGC210] {
+ background-color: #FF8787
+}
+
+div.highlight .-Color[class*=-C211] {
+ color: #FF87AF
+}
+
+div.highlight .-Color[class*=-BGC211] {
+ background-color: #FF87AF
+}
+
+div.highlight .-Color[class*=-C212] {
+ color: #FF87D7
+}
+
+div.highlight .-Color[class*=-BGC212] {
+ background-color: #FF87D7
+}
+
+div.highlight .-Color[class*=-C213] {
+ color: #FF87FF
+}
+
+div.highlight .-Color[class*=-BGC213] {
+ background-color: #FF87FF
+}
+
+div.highlight .-Color[class*=-C214] {
+ color: #FFAF00
+}
+
+div.highlight .-Color[class*=-BGC214] {
+ background-color: #FFAF00
+}
+
+div.highlight .-Color[class*=-C215] {
+ color: #FFAF5F
+}
+
+div.highlight .-Color[class*=-BGC215] {
+ background-color: #FFAF5F
+}
+
+div.highlight .-Color[class*=-C216] {
+ color: #FFAF87
+}
+
+div.highlight .-Color[class*=-BGC216] {
+ background-color: #FFAF87
+}
+
+div.highlight .-Color[class*=-C217] {
+ color: #FFAFAF
+}
+
+div.highlight .-Color[class*=-BGC217] {
+ background-color: #FFAFAF
+}
+
+div.highlight .-Color[class*=-C218] {
+ color: #FFAFD7
+}
+
+div.highlight .-Color[class*=-BGC218] {
+ background-color: #FFAFD7
+}
+
+div.highlight .-Color[class*=-C219] {
+ color: #FFAFFF
+}
+
+div.highlight .-Color[class*=-BGC219] {
+ background-color: #FFAFFF
+}
+
+div.highlight .-Color[class*=-C220] {
+ color: #FFD700
+}
+
+div.highlight .-Color[class*=-BGC220] {
+ background-color: #FFD700
+}
+
+div.highlight .-Color[class*=-C221] {
+ color: #FFD75F
+}
+
+div.highlight .-Color[class*=-BGC221] {
+ background-color: #FFD75F
+}
+
+div.highlight .-Color[class*=-C222] {
+ color: #FFD787
+}
+
+div.highlight .-Color[class*=-BGC222] {
+ background-color: #FFD787
+}
+
+div.highlight .-Color[class*=-C223] {
+ color: #FFD7AF
+}
+
+div.highlight .-Color[class*=-BGC223] {
+ background-color: #FFD7AF
+}
+
+div.highlight .-Color[class*=-C224] {
+ color: #FFD7D7
+}
+
+div.highlight .-Color[class*=-BGC224] {
+ background-color: #FFD7D7
+}
+
+div.highlight .-Color[class*=-C225] {
+ color: #FFD7FF
+}
+
+div.highlight .-Color[class*=-BGC225] {
+ background-color: #FFD7FF
+}
+
+div.highlight .-Color[class*=-C226] {
+ color: #FFFF00
+}
+
+div.highlight .-Color[class*=-BGC226] {
+ background-color: #FFFF00
+}
+
+div.highlight .-Color[class*=-C227] {
+ color: #FFFF5F
+}
+
+div.highlight .-Color[class*=-BGC227] {
+ background-color: #FFFF5F
+}
+
+div.highlight .-Color[class*=-C228] {
+ color: #FFFF87
+}
+
+div.highlight .-Color[class*=-BGC228] {
+ background-color: #FFFF87
+}
+
+div.highlight .-Color[class*=-C229] {
+ color: #FFFFAF
+}
+
+div.highlight .-Color[class*=-BGC229] {
+ background-color: #FFFFAF
+}
+
+div.highlight .-Color[class*=-C230] {
+ color: #FFFFD7
+}
+
+div.highlight .-Color[class*=-BGC230] {
+ background-color: #FFFFD7
+}
+
+div.highlight .-Color[class*=-C231] {
+ color: #FFFFFF
+}
+
+div.highlight .-Color[class*=-BGC231] {
+ background-color: #FFFFFF
+}
+
+div.highlight .-Color[class*=-C232] {
+ color: #080808
+}
+
+div.highlight .-Color[class*=-BGC232] {
+ background-color: #080808
+}
+
+div.highlight .-Color[class*=-C233] {
+ color: #121212
+}
+
+div.highlight .-Color[class*=-BGC233] {
+ background-color: #121212
+}
+
+div.highlight .-Color[class*=-C234] {
+ color: #1C1C1C
+}
+
+div.highlight .-Color[class*=-BGC234] {
+ background-color: #1C1C1C
+}
+
+div.highlight .-Color[class*=-C235] {
+ color: #262626
+}
+
+div.highlight .-Color[class*=-BGC235] {
+ background-color: #262626
+}
+
+div.highlight .-Color[class*=-C236] {
+ color: #303030
+}
+
+div.highlight .-Color[class*=-BGC236] {
+ background-color: #303030
+}
+
+div.highlight .-Color[class*=-C237] {
+ color: #3A3A3A
+}
+
+div.highlight .-Color[class*=-BGC237] {
+ background-color: #3A3A3A
+}
+
+div.highlight .-Color[class*=-C238] {
+ color: #444444
+}
+
+div.highlight .-Color[class*=-BGC238] {
+ background-color: #444444
+}
+
+div.highlight .-Color[class*=-C239] {
+ color: #4E4E4E
+}
+
+div.highlight .-Color[class*=-BGC239] {
+ background-color: #4E4E4E
+}
+
+div.highlight .-Color[class*=-C240] {
+ color: #585858
+}
+
+div.highlight .-Color[class*=-BGC240] {
+ background-color: #585858
+}
+
+div.highlight .-Color[class*=-C241] {
+ color: #626262
+}
+
+div.highlight .-Color[class*=-BGC241] {
+ background-color: #626262
+}
+
+div.highlight .-Color[class*=-C242] {
+ color: #6C6C6C
+}
+
+div.highlight .-Color[class*=-BGC242] {
+ background-color: #6C6C6C
+}
+
+div.highlight .-Color[class*=-C243] {
+ color: #767676
+}
+
+div.highlight .-Color[class*=-BGC243] {
+ background-color: #767676
+}
+
+div.highlight .-Color[class*=-C244] {
+ color: #808080
+}
+
+div.highlight .-Color[class*=-BGC244] {
+ background-color: #808080
+}
+
+div.highlight .-Color[class*=-C245] {
+ color: #8A8A8A
+}
+
+div.highlight .-Color[class*=-BGC245] {
+ background-color: #8A8A8A
+}
+
+div.highlight .-Color[class*=-C246] {
+ color: #949494
+}
+
+div.highlight .-Color[class*=-BGC246] {
+ background-color: #949494
+}
+
+div.highlight .-Color[class*=-C247] {
+ color: #9E9E9E
+}
+
+div.highlight .-Color[class*=-BGC247] {
+ background-color: #9E9E9E
+}
+
+div.highlight .-Color[class*=-C248] {
+ color: #A8A8A8
+}
+
+div.highlight .-Color[class*=-BGC248] {
+ background-color: #A8A8A8
+}
+
+div.highlight .-Color[class*=-C249] {
+ color: #B2B2B2
+}
+
+div.highlight .-Color[class*=-BGC249] {
+ background-color: #B2B2B2
+}
+
+div.highlight .-Color[class*=-C250] {
+ color: #BCBCBC
+}
+
+div.highlight .-Color[class*=-BGC250] {
+ background-color: #BCBCBC
+}
+
+div.highlight .-Color[class*=-C251] {
+ color: #C6C6C6
+}
+
+div.highlight .-Color[class*=-BGC251] {
+ background-color: #C6C6C6
+}
+
+div.highlight .-Color[class*=-C252] {
+ color: #D0D0D0
+}
+
+div.highlight .-Color[class*=-BGC252] {
+ background-color: #D0D0D0
+}
+
+div.highlight .-Color[class*=-C253] {
+ color: #DADADA
+}
+
+div.highlight .-Color[class*=-BGC253] {
+ background-color: #DADADA
+}
+
+div.highlight .-Color[class*=-C254] {
+ color: #E4E4E4
+}
+
+div.highlight .-Color[class*=-BGC254] {
+ background-color: #E4E4E4
+}
+
+div.highlight .-Color[class*=-C255] {
+ color: #EEEEEE
+}
+
+div.highlight .-Color[class*=-BGC255] {
+ background-color: #EEEEEE
+}
diff --git a/functions/master/aggregate/1.3.0/static/aggregate.html b/functions/master/aggregate/1.3.0/static/aggregate.html
index dd189991..94dd4dee 100644
--- a/functions/master/aggregate/1.3.0/static/aggregate.html
+++ b/functions/master/aggregate/1.3.0/static/aggregate.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/aggregate/1.3.0/static/documentation.html b/functions/master/aggregate/1.3.0/static/documentation.html
index 6f0be75b..5aac022e 100644
--- a/functions/master/aggregate/1.3.0/static/documentation.html
+++ b/functions/master/aggregate/1.3.0/static/documentation.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/aggregate/1.3.0/static/example.html b/functions/master/aggregate/1.3.0/static/example.html
index 0f230b87..d1ba3b94 100644
--- a/functions/master/aggregate/1.3.0/static/example.html
+++ b/functions/master/aggregate/1.3.0/static/example.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/aggregate/latest/static/aggregate.html b/functions/master/aggregate/latest/static/aggregate.html
index dd189991..94dd4dee 100644
--- a/functions/master/aggregate/latest/static/aggregate.html
+++ b/functions/master/aggregate/latest/static/aggregate.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/aggregate/latest/static/documentation.html b/functions/master/aggregate/latest/static/documentation.html
index 6f0be75b..5aac022e 100644
--- a/functions/master/aggregate/latest/static/documentation.html
+++ b/functions/master/aggregate/latest/static/documentation.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/aggregate/latest/static/example.html b/functions/master/aggregate/latest/static/example.html
index 0f230b87..d1ba3b94 100644
--- a/functions/master/aggregate/latest/static/example.html
+++ b/functions/master/aggregate/latest/static/example.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/arc_to_parquet/1.5.0/src/README.md b/functions/master/arc_to_parquet/1.5.0/src/README.md
new file mode 100644
index 00000000..568ea4e4
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/src/README.md
@@ -0,0 +1,28 @@
+## arc_to_parquet
+
+Retrieve a remote archive and save locally as a parquet file, [source](arc_to_parquet.py)
+
+Usage example:
+
+```python
+import mlrun, os
+mlrun.mlconf.dbpath = 'http://mlrun-api:8080'
+mlrun.mlconf.hub_url = '/User/functions/{name}/function.yaml'
+
+# load arc_to_parquet function from Github
+func = mlrun.import_function("hub://arc_to_parquet").apply(mlrun.mount_v3io())
+
+# create and run the task
+archive = "https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz"
+
+arc_to_parq_task = mlrun.NewTask(name='tasks - acquire remote',
+ params={'archive_url': archive,
+ 'key' : 'HIGGS'})
+# run
+run = func.run(arc_to_parq_task, artifact_path='/User/artifacts')
+```
+
+Output:
+
+```
+```
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/src/arc_to_parquet.ipynb b/functions/master/arc_to_parquet/1.5.0/src/arc_to_parquet.ipynb
new file mode 100644
index 00000000..59d2cefb
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/src/arc_to_parquet.ipynb
@@ -0,0 +1,834 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Archive to parquet function Example\n",
+ "> the arc_to_parquet function is typically for large files, the function accept an input of archive and stores the data into a file system.\n",
+ "in the example we will use arc_to_parquet function to unarchive the higgs-sample data-file stored on s3,\n",
+ "and will store it on the local file system in parquet format , "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# upload environment variables from env file if exists\n",
+ "import os,mlrun\n",
+ " \n",
+ "# Specify path\n",
+ "path = \"/tmp/examples_ci.env\"\n",
+ " \n",
+ "if os.path.exists(path):\n",
+ " env_dict = mlrun.set_env_from_file(path, return_dict=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2022-12-25 11:14:04,646 [info] loaded project arch-to-parquet-example from MLRun DB\n"
+ ]
+ }
+ ],
+ "source": [
+ "# create the new project\n",
+ "project_name = 'arch-to-parquet-example'\n",
+ "\n",
+ "# Initialize the MLRun project object\n",
+ "project = mlrun.get_or_create_project(project_name, context=\"./\", user_project=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# import packages\n",
+ "import mlrun\n",
+ "from mlrun import import_function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# declare the dataset\n",
+ "DATA_URL = \"https://s3.wasabisys.com/iguazio/data/market-palce/arc_to_parquet/higgs-sample.csv.gz\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# import the function\n",
+ "arc_to_parquet_function = import_function(\"hub://arc_to_parquet\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2022-12-25 11:14:05,030 [warning] it is recommended to use k8s secret (specify secret_name), specifying the aws_access_key/aws_secret_key directly is unsafe\n",
+ "> 2022-12-25 11:14:05,046 [info] starting run arc-to-parquet-arc_to_parquet uid=cb1962a5333f4f9f9c16faabfd1e94c1 DB=http://mlrun-api:8080\n",
+ "> 2022-12-25 11:14:05,203 [info] Job is running in the background, pod: arc-to-parquet-arc-to-parquet-8kz4b\n",
+ "> 2022-12-25 11:14:44,126 [info] downloading https://s3.wasabisys.com/iguazio/data/market-palce/arc_to_parquet/higgs-sample.csv.gz to local temp file\n",
+ "> 2022-12-25 11:14:44,793 [info] destination file does not exist, downloading\n",
+ "> 2022-12-25 11:14:45,143 [info] To track results use the CLI: {'info_cmd': 'mlrun get run cb1962a5333f4f9f9c16faabfd1e94c1 -p arch-to-parquet-example-jovyan', 'logs_cmd': 'mlrun logs cb1962a5333f4f9f9c16faabfd1e94c1 -p arch-to-parquet-example-jovyan'}\n",
+ "> 2022-12-25 11:14:45,144 [info] run executed, status=completed\n",
+ "final state: completed\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " arch-to-parquet-example-jovyan \n",
+ " \n",
+ " 0 \n",
+ " Dec 25 11:14:44 \n",
+ " completed \n",
+ " arc-to-parquet-arc_to_parquet \n",
+ " kind=job
owner=jovyan
mlrun/client_version=1.2.1-rc7
host=arc-to-parquet-arc-to-parquet-8kz4b
\n",
+ " archive_url
\n",
+ " key=higgs-sample
\n",
+ " \n",
+ " higgs-sample
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2022-12-25 11:14:47,549 [info] run executed, status=completed\n"
+ ]
+ }
+ ],
+ "source": [
+ "# run the function\n",
+ "arc_to_parquet_run = arc_to_parquet_function.run(params={\"key\": \"higgs-sample\"},\n",
+ " handler=\"arc_to_parquet\",\n",
+ " inputs={\"archive_url\": DATA_URL}\n",
+ " )\n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Show the results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Unnamed: 0 \n",
+ " 1.000000000000000000e+00 \n",
+ " 8.692932128906250000e-01 \n",
+ " -6.350818276405334473e-01 \n",
+ " 2.256902605295181274e-01 \n",
+ " 3.274700641632080078e-01 \n",
+ " -6.899932026863098145e-01 \n",
+ " 7.542022466659545898e-01 \n",
+ " -2.485731393098831177e-01 \n",
+ " -1.092063903808593750e+00 \n",
+ " ... \n",
+ " -1.045456994324922562e-02 \n",
+ " -4.576716944575309753e-02 \n",
+ " 3.101961374282836914e+00 \n",
+ " 1.353760004043579102e+00 \n",
+ " 9.795631170272827148e-01 \n",
+ " 9.780761599540710449e-01 \n",
+ " 9.200048446655273438e-01 \n",
+ " 7.216574549674987793e-01 \n",
+ " 9.887509346008300781e-01 \n",
+ " 8.766783475875854492e-01 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 0 \n",
+ " 1.0 \n",
+ " 0.907542 \n",
+ " 0.329147 \n",
+ " 0.359412 \n",
+ " 1.497970 \n",
+ " -0.313010 \n",
+ " 1.095531 \n",
+ " -0.557525 \n",
+ " -1.588230 \n",
+ " ... \n",
+ " -1.138930 \n",
+ " -0.000819 \n",
+ " 0.000000 \n",
+ " 0.302220 \n",
+ " 0.833048 \n",
+ " 0.985700 \n",
+ " 0.978098 \n",
+ " 0.779732 \n",
+ " 0.992356 \n",
+ " 0.798343 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1 \n",
+ " 1.0 \n",
+ " 0.798835 \n",
+ " 1.470639 \n",
+ " -1.635975 \n",
+ " 0.453773 \n",
+ " 0.425629 \n",
+ " 1.104875 \n",
+ " 1.282322 \n",
+ " 1.381664 \n",
+ " ... \n",
+ " 1.128848 \n",
+ " 0.900461 \n",
+ " 0.000000 \n",
+ " 0.909753 \n",
+ " 1.108330 \n",
+ " 0.985692 \n",
+ " 0.951331 \n",
+ " 0.803252 \n",
+ " 0.865924 \n",
+ " 0.780118 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2 \n",
+ " 0.0 \n",
+ " 1.344385 \n",
+ " -0.876626 \n",
+ " 0.935913 \n",
+ " 1.992050 \n",
+ " 0.882454 \n",
+ " 1.786066 \n",
+ " -1.646778 \n",
+ " -0.942383 \n",
+ " ... \n",
+ " -0.678379 \n",
+ " -1.360356 \n",
+ " 0.000000 \n",
+ " 0.946652 \n",
+ " 1.028704 \n",
+ " 0.998656 \n",
+ " 0.728281 \n",
+ " 0.869200 \n",
+ " 1.026736 \n",
+ " 0.957904 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 3 \n",
+ " 1.0 \n",
+ " 1.105009 \n",
+ " 0.321356 \n",
+ " 1.522401 \n",
+ " 0.882808 \n",
+ " -1.205349 \n",
+ " 0.681466 \n",
+ " -1.070464 \n",
+ " -0.921871 \n",
+ " ... \n",
+ " -0.373566 \n",
+ " 0.113041 \n",
+ " 0.000000 \n",
+ " 0.755856 \n",
+ " 1.361057 \n",
+ " 0.986610 \n",
+ " 0.838085 \n",
+ " 1.133295 \n",
+ " 0.872245 \n",
+ " 0.808487 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 4 \n",
+ " 0.0 \n",
+ " 1.595839 \n",
+ " -0.607811 \n",
+ " 0.007075 \n",
+ " 1.818450 \n",
+ " -0.111906 \n",
+ " 0.847550 \n",
+ " -0.566437 \n",
+ " 1.581239 \n",
+ " ... \n",
+ " -0.654227 \n",
+ " -1.274345 \n",
+ " 3.101961 \n",
+ " 0.823761 \n",
+ " 0.938191 \n",
+ " 0.971758 \n",
+ " 0.789176 \n",
+ " 0.430553 \n",
+ " 0.961357 \n",
+ " 0.957818 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 95 \n",
+ " 95 \n",
+ " 1.0 \n",
+ " 0.708794 \n",
+ " 0.850221 \n",
+ " 0.672354 \n",
+ " 0.948589 \n",
+ " -1.137755 \n",
+ " 1.240911 \n",
+ " 0.416861 \n",
+ " 1.581794 \n",
+ " ... \n",
+ " 1.461144 \n",
+ " -0.758832 \n",
+ " 0.000000 \n",
+ " 0.971662 \n",
+ " 0.856350 \n",
+ " 1.134024 \n",
+ " 0.949969 \n",
+ " 1.594826 \n",
+ " 1.048655 \n",
+ " 0.922793 \n",
+ " \n",
+ " \n",
+ " 96 \n",
+ " 96 \n",
+ " 0.0 \n",
+ " 1.135022 \n",
+ " 0.285319 \n",
+ " -1.109411 \n",
+ " 1.088544 \n",
+ " -0.896261 \n",
+ " 1.103134 \n",
+ " 0.126724 \n",
+ " 0.964220 \n",
+ " ... \n",
+ " -1.183070 \n",
+ " -0.956380 \n",
+ " 1.550981 \n",
+ " 0.883162 \n",
+ " 0.925714 \n",
+ " 0.986575 \n",
+ " 1.057785 \n",
+ " 0.599632 \n",
+ " 0.887197 \n",
+ " 0.970676 \n",
+ " \n",
+ " \n",
+ " 97 \n",
+ " 97 \n",
+ " 1.0 \n",
+ " 1.124042 \n",
+ " 0.354470 \n",
+ " 0.039812 \n",
+ " 1.132499 \n",
+ " 1.620306 \n",
+ " 0.955921 \n",
+ " 1.375404 \n",
+ " 0.415942 \n",
+ " ... \n",
+ " -0.175354 \n",
+ " 1.561916 \n",
+ " 0.000000 \n",
+ " 0.851553 \n",
+ " 1.251061 \n",
+ " 1.546395 \n",
+ " 0.743475 \n",
+ " 0.138550 \n",
+ " 0.717625 \n",
+ " 0.746045 \n",
+ " \n",
+ " \n",
+ " 98 \n",
+ " 98 \n",
+ " 1.0 \n",
+ " 0.341495 \n",
+ " -1.223359 \n",
+ " -1.372971 \n",
+ " 0.993666 \n",
+ " 0.691938 \n",
+ " 1.086187 \n",
+ " 0.318829 \n",
+ " -1.185753 \n",
+ " ... \n",
+ " 1.305406 \n",
+ " 0.426011 \n",
+ " 0.000000 \n",
+ " 1.429510 \n",
+ " 0.975100 \n",
+ " 0.988090 \n",
+ " 1.257337 \n",
+ " 1.353208 \n",
+ " 1.040413 \n",
+ " 0.962988 \n",
+ " \n",
+ " \n",
+ " 99 \n",
+ " 99 \n",
+ " 0.0 \n",
+ " 1.217926 \n",
+ " -0.307828 \n",
+ " -1.601573 \n",
+ " 1.532369 \n",
+ " -1.006824 \n",
+ " 0.555781 \n",
+ " -0.059439 \n",
+ " 0.819528 \n",
+ " ... \n",
+ " -1.487883 \n",
+ " 0.811120 \n",
+ " 0.000000 \n",
+ " 0.627298 \n",
+ " 0.812112 \n",
+ " 0.989371 \n",
+ " 0.704444 \n",
+ " 0.573487 \n",
+ " 0.708875 \n",
+ " 0.764996 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
100 rows × 30 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Unnamed: 0 1.000000000000000000e+00 8.692932128906250000e-01 \\\n",
+ "0 0 1.0 0.907542 \n",
+ "1 1 1.0 0.798835 \n",
+ "2 2 0.0 1.344385 \n",
+ "3 3 1.0 1.105009 \n",
+ "4 4 0.0 1.595839 \n",
+ ".. ... ... ... \n",
+ "95 95 1.0 0.708794 \n",
+ "96 96 0.0 1.135022 \n",
+ "97 97 1.0 1.124042 \n",
+ "98 98 1.0 0.341495 \n",
+ "99 99 0.0 1.217926 \n",
+ "\n",
+ " -6.350818276405334473e-01 2.256902605295181274e-01 \\\n",
+ "0 0.329147 0.359412 \n",
+ "1 1.470639 -1.635975 \n",
+ "2 -0.876626 0.935913 \n",
+ "3 0.321356 1.522401 \n",
+ "4 -0.607811 0.007075 \n",
+ ".. ... ... \n",
+ "95 0.850221 0.672354 \n",
+ "96 0.285319 -1.109411 \n",
+ "97 0.354470 0.039812 \n",
+ "98 -1.223359 -1.372971 \n",
+ "99 -0.307828 -1.601573 \n",
+ "\n",
+ " 3.274700641632080078e-01 -6.899932026863098145e-01 \\\n",
+ "0 1.497970 -0.313010 \n",
+ "1 0.453773 0.425629 \n",
+ "2 1.992050 0.882454 \n",
+ "3 0.882808 -1.205349 \n",
+ "4 1.818450 -0.111906 \n",
+ ".. ... ... \n",
+ "95 0.948589 -1.137755 \n",
+ "96 1.088544 -0.896261 \n",
+ "97 1.132499 1.620306 \n",
+ "98 0.993666 0.691938 \n",
+ "99 1.532369 -1.006824 \n",
+ "\n",
+ " 7.542022466659545898e-01 -2.485731393098831177e-01 \\\n",
+ "0 1.095531 -0.557525 \n",
+ "1 1.104875 1.282322 \n",
+ "2 1.786066 -1.646778 \n",
+ "3 0.681466 -1.070464 \n",
+ "4 0.847550 -0.566437 \n",
+ ".. ... ... \n",
+ "95 1.240911 0.416861 \n",
+ "96 1.103134 0.126724 \n",
+ "97 0.955921 1.375404 \n",
+ "98 1.086187 0.318829 \n",
+ "99 0.555781 -0.059439 \n",
+ "\n",
+ " -1.092063903808593750e+00 ... -1.045456994324922562e-02 \\\n",
+ "0 -1.588230 ... -1.138930 \n",
+ "1 1.381664 ... 1.128848 \n",
+ "2 -0.942383 ... -0.678379 \n",
+ "3 -0.921871 ... -0.373566 \n",
+ "4 1.581239 ... -0.654227 \n",
+ ".. ... ... ... \n",
+ "95 1.581794 ... 1.461144 \n",
+ "96 0.964220 ... -1.183070 \n",
+ "97 0.415942 ... -0.175354 \n",
+ "98 -1.185753 ... 1.305406 \n",
+ "99 0.819528 ... -1.487883 \n",
+ "\n",
+ " -4.576716944575309753e-02 3.101961374282836914e+00 \\\n",
+ "0 -0.000819 0.000000 \n",
+ "1 0.900461 0.000000 \n",
+ "2 -1.360356 0.000000 \n",
+ "3 0.113041 0.000000 \n",
+ "4 -1.274345 3.101961 \n",
+ ".. ... ... \n",
+ "95 -0.758832 0.000000 \n",
+ "96 -0.956380 1.550981 \n",
+ "97 1.561916 0.000000 \n",
+ "98 0.426011 0.000000 \n",
+ "99 0.811120 0.000000 \n",
+ "\n",
+ " 1.353760004043579102e+00 9.795631170272827148e-01 \\\n",
+ "0 0.302220 0.833048 \n",
+ "1 0.909753 1.108330 \n",
+ "2 0.946652 1.028704 \n",
+ "3 0.755856 1.361057 \n",
+ "4 0.823761 0.938191 \n",
+ ".. ... ... \n",
+ "95 0.971662 0.856350 \n",
+ "96 0.883162 0.925714 \n",
+ "97 0.851553 1.251061 \n",
+ "98 1.429510 0.975100 \n",
+ "99 0.627298 0.812112 \n",
+ "\n",
+ " 9.780761599540710449e-01 9.200048446655273438e-01 \\\n",
+ "0 0.985700 0.978098 \n",
+ "1 0.985692 0.951331 \n",
+ "2 0.998656 0.728281 \n",
+ "3 0.986610 0.838085 \n",
+ "4 0.971758 0.789176 \n",
+ ".. ... ... \n",
+ "95 1.134024 0.949969 \n",
+ "96 0.986575 1.057785 \n",
+ "97 1.546395 0.743475 \n",
+ "98 0.988090 1.257337 \n",
+ "99 0.989371 0.704444 \n",
+ "\n",
+ " 7.216574549674987793e-01 9.887509346008300781e-01 \\\n",
+ "0 0.779732 0.992356 \n",
+ "1 0.803252 0.865924 \n",
+ "2 0.869200 1.026736 \n",
+ "3 1.133295 0.872245 \n",
+ "4 0.430553 0.961357 \n",
+ ".. ... ... \n",
+ "95 1.594826 1.048655 \n",
+ "96 0.599632 0.887197 \n",
+ "97 0.138550 0.717625 \n",
+ "98 1.353208 1.040413 \n",
+ "99 0.573487 0.708875 \n",
+ "\n",
+ " 8.766783475875854492e-01 \n",
+ "0 0.798343 \n",
+ "1 0.780118 \n",
+ "2 0.957904 \n",
+ "3 0.808487 \n",
+ "4 0.957818 \n",
+ ".. ... \n",
+ "95 0.922793 \n",
+ "96 0.970676 \n",
+ "97 0.746045 \n",
+ "98 0.962988 \n",
+ "99 0.764996 \n",
+ "\n",
+ "[100 rows x 30 columns]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "arc_to_parquet_run.artifact('higgs-sample').show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/functions/master/arc_to_parquet/1.5.0/src/arc_to_parquet.py b/functions/master/arc_to_parquet/1.5.0/src/arc_to_parquet.py
new file mode 100644
index 00000000..d9275b7c
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/src/arc_to_parquet.py
@@ -0,0 +1,134 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import pandas as pd
+import pyarrow.parquet as pq
+import pyarrow as pa
+import numpy as np
+
+
+from mlrun.execution import MLClientCtx
+from mlrun.datastore import DataItem
+
+from typing import List
+import os
+
+
+
+def _chunk_readwrite(
+ archive_url,
+ dest_path,
+ chunksize,
+ header,
+ encoding,
+ dtype,
+ dataset
+):
+ """stream read and write archives
+
+ pandas reads and parquet writes
+
+ notes
+ -----
+ * dest_path can be either a file.parquet, or in hte case of partitioned parquet
+ it will be only the destination folder of the parquet partition files
+ """
+ pqwriter = None
+ header = []
+ for i, df in enumerate(pd.read_csv(archive_url, chunksize=chunksize,
+ names=header, encoding=encoding,
+ dtype=dtype)):
+ table = pa.Table.from_pandas(df)
+ if i == 0:
+ if dataset:
+ header = np.copy(table.schema)
+ else:
+ pqwriter = pq.ParquetWriter(dest_path, table.schema)
+ if dataset:
+ pq.write_to_dataset(table, root_path=dest_path, partition_cols=partition_cols)
+ else:
+ pqwriter.write_table(table)
+ if pqwriter:
+ pqwriter.close()
+
+ return header
+
+
+def arc_to_parquet(
+ context: MLClientCtx,
+ archive_url: DataItem,
+ header: List[str] = [None],
+ chunksize: int = 0,
+ dtype=None,
+ encoding: str = "latin-1",
+ key: str = "data",
+ dataset: str = "None",
+ part_cols=[],
+ file_ext: str = "parquet",
+ index: bool = False,
+ refresh_data: bool = False,
+ stats: bool = False
+) -> None:
+ """Open a file/object archive and save as a parquet file or dataset
+
+ Notes
+ -----
+ * this function is typically for large files, please be sure to check all settings
+ * partitioning requires precise specification of column types.
+ * the archive_url can be any file readable by pandas read_csv, which includes tar files
+ * if the `dataset` parameter is not empty, then a partitioned dataset will be created
+ instead of a single file in the folder `dataset`
+ * if a key exists already then it will not be re-acquired unless the `refresh_data` param
+ is set to `True`. This is in case the original file is corrupt, or a refresh is
+ required.
+
+ :param context: the function context
+ :param archive_url: MLRun data input (DataItem object)
+ :param chunksize: (0) when > 0, row size (chunk) to retrieve
+ per iteration
+ :param dtype destination data type of specified columns
+ :param encoding ("latin-8") file encoding
+ :param key: key in artifact store (when log_data=True)
+ :param dataset: (None) if not None then "target_path/dataset"
+ is folder for partitioned files
+ :param part_cols: ([]) list of partitioning columns
+ :param file_ext: (parquet) csv/parquet file extension
+ :param index: (False) pandas save index option
+ :param refresh_data: (False) overwrite existing data at that location
+ :param stats: (None) calculate table stats when logging artifact
+ """
+ base_path = context.artifact_path
+ os.makedirs(base_path, exist_ok=True)
+
+ archive_url = archive_url.local()
+
+ if dataset is not None:
+ dest_path = os.path.join(base_path, dataset)
+ exists = os.path.isdir(dest_path)
+ else:
+ dest_path = os.path.join(base_path, key + f".{file_ext}")
+ exists = os.path.isfile(dest_path)
+
+ if not exists:
+ context.logger.info("destination file does not exist, downloading")
+ if chunksize > 0:
+ header = _chunk_readwrite(archive_url, dest_path, chunksize,
+ encoding, dtype, dataset)
+ context.log_dataset(key=key, stats=stats, format='parquet',
+ target_path=dest_path)
+ else:
+ df = pd.read_csv(archive_url)
+ context.log_dataset(key, df=df, format=file_ext, index=index)
+ else:
+ context.logger.info("destination file already exists, nothing done")
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/src/function.yaml b/functions/master/arc_to_parquet/1.5.0/src/function.yaml
new file mode 100644
index 00000000..d10e841c
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/src/function.yaml
@@ -0,0 +1,100 @@
+verbose: false
+metadata:
+ tag: ''
+ name: arc-to-parquet
+ categories:
+ - utils
+kind: job
+spec:
+ command: ''
+ default_handler: arc_to_parquet
+ entry_points:
+ arc_to_parquet:
+ has_varargs: false
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: the function context
+ - name: archive_url
+ type: DataItem
+ doc: MLRun data input (DataItem object)
+ - name: header
+ type: List[str]
+ default:
+ - null
+ - name: chunksize
+ type: int
+ doc: (0) when > 0, row size (chunk) to retrieve per iteration
+ default: 0
+ - name: dtype
+ default: null
+ - name: encoding
+ type: str
+ default: latin-1
+ - name: key
+ type: str
+ doc: key in artifact store (when log_data=True)
+ default: data
+ - name: dataset
+ type: str
+ doc: (None) if not None then "target_path/dataset" is folder for partitioned
+ files
+ default: None
+ - name: part_cols
+ doc: ([]) list of partitioning columns
+ default: []
+ - name: file_ext
+ type: str
+ doc: (parquet) csv/parquet file extension
+ default: parquet
+ - name: index
+ type: bool
+ doc: (False) pandas save index option
+ default: false
+ - name: refresh_data
+ type: bool
+ doc: (False) overwrite existing data at that location
+ default: false
+ - name: stats
+ type: bool
+ doc: (None) calculate table stats when logging artifact
+ default: false
+ lineno: 68
+ outputs:
+ - type: None
+ name: arc_to_parquet
+ has_kwargs: false
+ doc: 'Open a file/object archive and save as a parquet file or dataset
+
+
+ Notes
+
+ -----
+
+ * this function is typically for large files, please be sure to check all
+ settings
+
+ * partitioning requires precise specification of column types.
+
+ * the archive_url can be any file readable by pandas read_csv, which includes
+ tar files
+
+ * if the `dataset` parameter is not empty, then a partitioned dataset will
+ be created
+
+ instead of a single file in the folder `dataset`
+
+ * if a key exists already then it will not be re-acquired unless the `refresh_data`
+ param
+
+ is set to `True`. This is in case the original file is corrupt, or a refresh
+ is
+
+ required.'
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgcHlhcnJvdy5wYXJxdWV0IGFzIHBxCmltcG9ydCBweWFycm93IGFzIHBhCmltcG9ydCBudW1weSBhcyBucAoKCmZyb20gbWxydW4uZXhlY3V0aW9uIGltcG9ydCBNTENsaWVudEN0eApmcm9tIG1scnVuLmRhdGFzdG9yZSBpbXBvcnQgRGF0YUl0ZW0KCmZyb20gdHlwaW5nIGltcG9ydCBMaXN0CmltcG9ydCBvcwoKCgpkZWYgX2NodW5rX3JlYWR3cml0ZSgKICAgICAgICBhcmNoaXZlX3VybCwKICAgICAgICBkZXN0X3BhdGgsCiAgICAgICAgY2h1bmtzaXplLAogICAgICAgIGhlYWRlciwKICAgICAgICBlbmNvZGluZywKICAgICAgICBkdHlwZSwKICAgICAgICBkYXRhc2V0Cik6CiAgICAiIiJzdHJlYW0gcmVhZCBhbmQgd3JpdGUgYXJjaGl2ZXMKCiAgICBwYW5kYXMgcmVhZHMgYW5kIHBhcnF1ZXQgd3JpdGVzCgogICAgbm90ZXMKICAgIC0tLS0tCiAgICAqIGRlc3RfcGF0aCBjYW4gYmUgZWl0aGVyIGEgZmlsZS5wYXJxdWV0LCBvciBpbiBodGUgY2FzZSBvZiBwYXJ0aXRpb25lZCBwYXJxdWV0CiAgICAgIGl0IHdpbGwgYmUgb25seSB0aGUgZGVzdGluYXRpb24gZm9sZGVyIG9mIHRoZSBwYXJxdWV0IHBhcnRpdGlvbiBmaWxlcwogICAgIiIiCiAgICBwcXdyaXRlciA9IE5vbmUKICAgIGhlYWRlciA9IFtdCiAgICBmb3IgaSwgZGYgaW4gZW51bWVyYXRlKHBkLnJlYWRfY3N2KGFyY2hpdmVfdXJsLCBjaHVua3NpemU9Y2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lcz1oZWFkZXIsIGVuY29kaW5nPWVuY29kaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1kdHlwZSkpOgogICAgICAgIHRhYmxlID0gcGEuVGFibGUuZnJvbV9wYW5kYXMoZGYpCiAgICAgICAgaWYgaSA9PSAwOgogICAgICAgICAgICBpZiBkYXRhc2V0OgogICAgICAgICAgICAgICAgaGVhZGVyID0gbnAuY29weSh0YWJsZS5zY2hlbWEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBwcXdyaXRlciA9IHBxLlBhcnF1ZXRXcml0ZXIoZGVzdF9wYXRoLCB0YWJsZS5zY2hlbWEpCiAgICAgICAgaWYgZGF0YXNldDoKICAgICAgICAgICAgcHEud3JpdGVfdG9fZGF0YXNldCh0YWJsZSwgcm9vdF9wYXRoPWRlc3RfcGF0aCwgcGFydGl0aW9uX2NvbHM9cGFydGl0aW9uX2NvbHMpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgcHF3cml0ZXIud3JpdGVfdGFibGUodGFibGUpCiAgICBpZiBwcXdyaXRlcjoKICAgICAgICBwcXdyaXRlci5jbG9zZSgpCgogICAgcmV0dXJuIGhlYWRlcgoKCmRlZiBhcmNfdG9fcGFycXVldCgKICAgICAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgICAgICBhcmNoaXZlX3VybDogRGF0YUl0ZW0sCiAgICAgICAgaGVhZGVyOiBMaXN0W3N0cl0gPSBbTm9uZV0sCiAgICAgICAgY2h1bmtzaXplOiBpbnQgPSAwLAogICAgICAgIGR0eXBlPU5vbmUsCiAgICAgICAgZW5jb2Rpbmc6IHN0ciA9ICJsYXRpbi0xIiwKICAgICAgICBrZXk6IHN0ciA9ICJkYXRhIiwKICAgICAgICBkYXRhc2V0OiBzdHIgPSAiTm9uZSIsCiAgICAgICAgcGFydF9jb2xzPVtdLAogICAgICAgIGZpbGVfZXh0OiBzdHIgPSAicGFycXVldCIsCiAgICAgICAgaW5kZXg6IGJvb2wgPSBGYWxzZSwKICAgICAgICByZWZyZXNoX2RhdGE6IGJvb2wgPSBGYWxzZSwKICAgICAgICBzdGF0czogYm9vbCA9IEZhbHNlCikgLT4gTm9uZToKICAgICIiIk9wZW4gYSBmaWxlL29iamVjdCBhcmNoaXZlIGFuZCBzYXZlIGFzIGEgcGFycXVldCBmaWxlIG9yIGRhdGFzZXQKCiAgICBOb3RlcwogICAgLS0tLS0KICAgICogdGhpcyBmdW5jdGlvbiBpcyB0eXBpY2FsbHkgZm9yIGxhcmdlIGZpbGVzLCBwbGVhc2UgYmUgc3VyZSB0byBjaGVjayBhbGwgc2V0dGluZ3MKICAgICogcGFydGl0aW9uaW5nIHJlcXVpcmVzIHByZWNpc2Ugc3BlY2lmaWNhdGlvbiBvZiBjb2x1bW4gdHlwZXMuCiAgICAqIHRoZSBhcmNoaXZlX3VybCBjYW4gYmUgYW55IGZpbGUgcmVhZGFibGUgYnkgcGFuZGFzIHJlYWRfY3N2LCB3aGljaCBpbmNsdWRlcyB0YXIgZmlsZXMKICAgICogaWYgdGhlIGBkYXRhc2V0YCBwYXJhbWV0ZXIgaXMgbm90IGVtcHR5LCB0aGVuIGEgcGFydGl0aW9uZWQgZGF0YXNldCB3aWxsIGJlIGNyZWF0ZWQKICAgIGluc3RlYWQgb2YgYSBzaW5nbGUgZmlsZSBpbiB0aGUgZm9sZGVyIGBkYXRhc2V0YAogICAgKiBpZiBhIGtleSBleGlzdHMgYWxyZWFkeSB0aGVuIGl0IHdpbGwgbm90IGJlIHJlLWFjcXVpcmVkIHVubGVzcyB0aGUgYHJlZnJlc2hfZGF0YWAgcGFyYW0KICAgIGlzIHNldCB0byBgVHJ1ZWAuICBUaGlzIGlzIGluIGNhc2UgdGhlIG9yaWdpbmFsIGZpbGUgaXMgY29ycnVwdCwgb3IgYSByZWZyZXNoIGlzCiAgICByZXF1aXJlZC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgIHRoZSBmdW5jdGlvbiBjb250ZXh0CiAgICA6cGFyYW0gYXJjaGl2ZV91cmw6ICAgIE1MUnVuIGRhdGEgaW5wdXQgKERhdGFJdGVtIG9iamVjdCkKICAgIDpwYXJhbSBjaHVua3NpemU6ICAgICAgKDApIHdoZW4gPiAwLCByb3cgc2l6ZSAoY2h1bmspIHRvIHJldHJpZXZlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHBlciBpdGVyYXRpb24KICAgIDpwYXJhbSBkdHlwZSAgICAgICAgICAgZGVzdGluYXRpb24gZGF0YSB0eXBlIG9mIHNwZWNpZmllZCBjb2x1bW5zCiAgICA6cGFyYW0gZW5jb2RpbmcgICAgICAgICgibGF0aW4tOCIpIGZpbGUgZW5jb2RpbmcKICAgIDpwYXJhbSBrZXk6ICAgICAgICAgICAga2V5IGluIGFydGlmYWN0IHN0b3JlICh3aGVuIGxvZ19kYXRhPVRydWUpCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgIChOb25lKSBpZiBub3QgTm9uZSB0aGVuICJ0YXJnZXRfcGF0aC9kYXRhc2V0IgogICAgICAgICAgICAgICAgICAgICAgICAgICBpcyBmb2xkZXIgZm9yIHBhcnRpdGlvbmVkIGZpbGVzCiAgICA6cGFyYW0gcGFydF9jb2xzOiAgICAgIChbXSkgbGlzdCBvZiBwYXJ0aXRpb25pbmcgY29sdW1ucwogICAgOnBhcmFtIGZpbGVfZXh0OiAgICAgICAocGFycXVldCkgY3N2L3BhcnF1ZXQgZmlsZSBleHRlbnNpb24KICAgIDpwYXJhbSBpbmRleDogICAgICAgICAgKEZhbHNlKSBwYW5kYXMgc2F2ZSBpbmRleCBvcHRpb24KICAgIDpwYXJhbSByZWZyZXNoX2RhdGE6ICAgKEZhbHNlKSBvdmVyd3JpdGUgZXhpc3RpbmcgZGF0YSBhdCB0aGF0IGxvY2F0aW9uCiAgICA6cGFyYW0gc3RhdHM6ICAgICAgICAgIChOb25lKSBjYWxjdWxhdGUgdGFibGUgc3RhdHMgd2hlbiBsb2dnaW5nIGFydGlmYWN0CiAgICAiIiIKICAgIGJhc2VfcGF0aCA9IGNvbnRleHQuYXJ0aWZhY3RfcGF0aAogICAgb3MubWFrZWRpcnMoYmFzZV9wYXRoLCBleGlzdF9vaz1UcnVlKQoKICAgIGFyY2hpdmVfdXJsID0gYXJjaGl2ZV91cmwubG9jYWwoKQoKICAgIGlmIGRhdGFzZXQgaXMgbm90IE5vbmU6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwgZGF0YXNldCkKICAgICAgICBleGlzdHMgPSBvcy5wYXRoLmlzZGlyKGRlc3RfcGF0aCkKICAgIGVsc2U6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwga2V5ICsgZiIue2ZpbGVfZXh0fSIpCiAgICAgICAgZXhpc3RzID0gb3MucGF0aC5pc2ZpbGUoZGVzdF9wYXRoKQoKICAgIGlmIG5vdCBleGlzdHM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiZGVzdGluYXRpb24gZmlsZSBkb2VzIG5vdCBleGlzdCwgZG93bmxvYWRpbmciKQogICAgICAgIGlmIGNodW5rc2l6ZSA+IDA6CiAgICAgICAgICAgIGhlYWRlciA9IF9jaHVua19yZWFkd3JpdGUoYXJjaGl2ZV91cmwsIGRlc3RfcGF0aCwgY2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVuY29kaW5nLCBkdHlwZSwgZGF0YXNldCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXk9a2V5LCBzdGF0cz1zdGF0cywgZm9ybWF0PSdwYXJxdWV0JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YXJnZXRfcGF0aD1kZXN0X3BhdGgpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgZGYgPSBwZC5yZWFkX2NzdihhcmNoaXZlX3VybCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXksIGRmPWRmLCBmb3JtYXQ9ZmlsZV9leHQsIGluZGV4PWluZGV4KQogICAgZWxzZToKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKCJkZXN0aW5hdGlvbiBmaWxlIGFscmVhZHkgZXhpc3RzLCBub3RoaW5nIGRvbmUiKQ==
+ code_origin: ''
+ origin_filename: ''
+ description: retrieve remote archive, open and save as parquet
+ disable_auto_mount: false
+ image: mlrun/mlrun
diff --git a/functions/master/arc_to_parquet/1.5.0/src/item.yaml b/functions/master/arc_to_parquet/1.5.0/src/item.yaml
new file mode 100644
index 00000000..4bc2634c
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/src/item.yaml
@@ -0,0 +1,24 @@
+apiVersion: v1
+categories:
+- utils
+description: retrieve remote archive, open and save as parquet
+doc: ''
+example: arc_to_parquet.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ author: avi
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.7.0
+name: arc-to-parquet
+platformVersion: 3.5.4
+spec:
+ filename: arc_to_parquet.py
+ handler: arc_to_parquet
+ image: mlrun/mlrun
+ kind: job
+ requirements: []
+url: ''
+version: 1.5.0
diff --git a/functions/master/arc_to_parquet/1.5.0/src/requirements.txt b/functions/master/arc_to_parquet/1.5.0/src/requirements.txt
new file mode 100644
index 00000000..97eeefad
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/src/requirements.txt
@@ -0,0 +1,2 @@
+pyarrow
+pandas
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/src/test_arc_to_parquet.py b/functions/master/arc_to_parquet/1.5.0/src/test_arc_to_parquet.py
new file mode 100644
index 00000000..f0299f57
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/src/test_arc_to_parquet.py
@@ -0,0 +1,43 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from mlrun import code_to_function, import_function
+
+DATA_URL = "https://s3.wasabisys.com/iguazio/data/market-palce/arc_to_parquet/higgs-sample.csv.gz"
+
+def test_run_arc_to_parquet():
+ fn = code_to_function(name='test_arc_to_parquet',
+ filename="arc_to_parquet.py",
+ handler="arc_to_parquet",
+ kind="local",
+ )
+ run = fn.run(params={"key": "higgs-sample"},
+ handler="arc_to_parquet",
+ inputs={"archive_url": DATA_URL},
+ artifact_path='artifacts',
+ local=False)
+
+ assert(run.outputs['higgs-sample'])
+
+def test_run_local_arc_to_parquet():
+ import os
+ os.getcwd()
+ fn = import_function("function.yaml")
+ run = fn.run(params={"key": "higgs-sample"},
+ handler="arc_to_parquet",
+ inputs={"archive_url": DATA_URL},
+ artifact_path=os.getcwd()+'/artifacts',
+ local=True)
+
+ assert(run.outputs['higgs-sample'])
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/static/arc_to_parquet.html b/functions/master/arc_to_parquet/1.5.0/static/arc_to_parquet.html
new file mode 100644
index 00000000..3598982d
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/static/arc_to_parquet.html
@@ -0,0 +1,309 @@
+
+
+
+
+
+
+
+arc_to_parquet.arc_to_parquet
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Back to top
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Source code for arc_to_parquet.arc_to_parquet
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import pandas as pd
+import pyarrow.parquet as pq
+import pyarrow as pa
+import numpy as np
+
+
+from mlrun.execution import MLClientCtx
+from mlrun.datastore import DataItem
+
+from typing import List
+import os
+
+
+
+def _chunk_readwrite (
+ archive_url ,
+ dest_path ,
+ chunksize ,
+ header ,
+ encoding ,
+ dtype ,
+ dataset
+):
+ """stream read and write archives
+
+ pandas reads and parquet writes
+
+ notes
+ -----
+ * dest_path can be either a file.parquet, or in hte case of partitioned parquet
+ it will be only the destination folder of the parquet partition files
+ """
+ pqwriter = None
+ header = []
+ for i , df in enumerate ( pd . read_csv ( archive_url , chunksize = chunksize ,
+ names = header , encoding = encoding ,
+ dtype = dtype )):
+ table = pa . Table . from_pandas ( df )
+ if i == 0 :
+ if dataset :
+ header = np . copy ( table . schema )
+ else :
+ pqwriter = pq . ParquetWriter ( dest_path , table . schema )
+ if dataset :
+ pq . write_to_dataset ( table , root_path = dest_path , partition_cols = partition_cols )
+ else :
+ pqwriter . write_table ( table )
+ if pqwriter :
+ pqwriter . close ()
+
+ return header
+
+
+
+
[docs]
+
def arc_to_parquet (
+
context : MLClientCtx ,
+
archive_url : DataItem ,
+
header : List [ str ] = [ None ],
+
chunksize : int = 0 ,
+
dtype = None ,
+
encoding : str = "latin-1" ,
+
key : str = "data" ,
+
dataset : str = "None" ,
+
part_cols = [],
+
file_ext : str = "parquet" ,
+
index : bool = False ,
+
refresh_data : bool = False ,
+
stats : bool = False
+
) -> None :
+
"""Open a file/object archive and save as a parquet file or dataset
+
+
Notes
+
-----
+
* this function is typically for large files, please be sure to check all settings
+
* partitioning requires precise specification of column types.
+
* the archive_url can be any file readable by pandas read_csv, which includes tar files
+
* if the `dataset` parameter is not empty, then a partitioned dataset will be created
+
instead of a single file in the folder `dataset`
+
* if a key exists already then it will not be re-acquired unless the `refresh_data` param
+
is set to `True`. This is in case the original file is corrupt, or a refresh is
+
required.
+
+
:param context: the function context
+
:param archive_url: MLRun data input (DataItem object)
+
:param chunksize: (0) when > 0, row size (chunk) to retrieve
+
per iteration
+
:param dtype destination data type of specified columns
+
:param encoding ("latin-8") file encoding
+
:param key: key in artifact store (when log_data=True)
+
:param dataset: (None) if not None then "target_path/dataset"
+
is folder for partitioned files
+
:param part_cols: ([]) list of partitioning columns
+
:param file_ext: (parquet) csv/parquet file extension
+
:param index: (False) pandas save index option
+
:param refresh_data: (False) overwrite existing data at that location
+
:param stats: (None) calculate table stats when logging artifact
+
"""
+
base_path = context . artifact_path
+
os . makedirs ( base_path , exist_ok = True )
+
+
archive_url = archive_url . local ()
+
+
if dataset is not None :
+
dest_path = os . path . join ( base_path , dataset )
+
exists = os . path . isdir ( dest_path )
+
else :
+
dest_path = os . path . join ( base_path , key + f ". { file_ext } " )
+
exists = os . path . isfile ( dest_path )
+
+
if not exists :
+
context . logger . info ( "destination file does not exist, downloading" )
+
if chunksize > 0 :
+
header = _chunk_readwrite ( archive_url , dest_path , chunksize ,
+
encoding , dtype , dataset )
+
context . log_dataset ( key = key , stats = stats , format = 'parquet' ,
+
target_path = dest_path )
+
else :
+
df = pd . read_csv ( archive_url )
+
context . log_dataset ( key , df = df , format = file_ext , index = index )
+
else :
+
context . logger . info ( "destination file already exists, nothing done" )
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/static/documentation.html b/functions/master/arc_to_parquet/1.5.0/static/documentation.html
new file mode 100644
index 00000000..6f217a17
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/static/documentation.html
@@ -0,0 +1,280 @@
+
+
+
+
+
+
+
+arc_to_parquet package
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Back to top
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
arc_to_parquet package
+
+
+
+
+
+
+arc_to_parquet package
+
+
+arc_to_parquet.arc_to_parquet module
+
+
+arc_to_parquet.arc_to_parquet. arc_to_parquet ( context : MLClientCtx , archive_url : DataItem , header : List [ str ] = [None] , chunksize : int = 0 , dtype = None , encoding : str = 'latin-1' , key : str = 'data' , dataset : str = 'None' , part_cols = [] , file_ext : str = 'parquet' , index : bool = False , refresh_data : bool = False , stats : bool = False ) → None [source]
+Open a file/object archive and save as a parquet file or dataset
+Notes
+
+this function is typically for large files, please be sure to check all settings
+partitioning requires precise specification of column types.
+the archive_url can be any file readable by pandas read_csv, which includes tar files
+if the dataset parameter is not empty, then a partitioned dataset will be created
+
+instead of a single file in the folder dataset
+* if a key exists already then it will not be re-acquired unless the refresh_data param
+is set to True . This is in case the original file is corrupt, or a refresh is
+required.
+
+Parameters:
+
+context – the function context
+archive_url – MLRun data input (DataItem object)
+chunksize – (0) when > 0, row size (chunk) to retrieve
+per iteration
+
+
+
+:param dtype destination data type of specified columns
+:param encoding (“latin-8”) file encoding
+:param key: key in artifact store (when log_data=True)
+:param dataset: (None) if not None then “target_path/dataset”
+
+is folder for partitioned files
+
+
+Parameters:
+
+part_cols – ([]) list of partitioning columns
+file_ext – (parquet) csv/parquet file extension
+index – (False) pandas save index option
+refresh_data – (False) overwrite existing data at that location
+stats – (None) calculate table stats when logging artifact
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/static/example.html b/functions/master/arc_to_parquet/1.5.0/static/example.html
new file mode 100644
index 00000000..3f87a94c
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/static/example.html
@@ -0,0 +1,818 @@
+
+
+
+
+
+
+
+Archive to parquet function Example
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Back to top
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Archive to parquet function Example
+
+
+
+
+
+
+Archive to parquet function Example
+
+the arc_to_parquet function is typically for large files, the function accept an input of archive and stores the data into a file system.
+in the example we will use arc_to_parquet function to unarchive the higgs-sample data-file stored on s3,
+and will store it on the local file system in parquet format ,
+
+
+
+
+
+
> 2022-12-25 11:14:04,646 [info] loaded project arch-to-parquet-example from MLRun DB
+
+
+
+
+
+
+
+
+
+
+
> 2022-12-25 11:14:05,030 [warning] it is recommended to use k8s secret (specify secret_name), specifying the aws_access_key/aws_secret_key directly is unsafe
+> 2022-12-25 11:14:05,046 [info] starting run arc-to-parquet-arc_to_parquet uid=cb1962a5333f4f9f9c16faabfd1e94c1 DB=http://mlrun-api:8080
+> 2022-12-25 11:14:05,203 [info] Job is running in the background, pod: arc-to-parquet-arc-to-parquet-8kz4b
+> 2022-12-25 11:14:44,126 [info] downloading https://s3.wasabisys.com/iguazio/data/market-palce/arc_to_parquet/higgs-sample.csv.gz to local temp file
+> 2022-12-25 11:14:44,793 [info] destination file does not exist, downloading
+> 2022-12-25 11:14:45,143 [info] To track results use the CLI: {'info_cmd': 'mlrun get run cb1962a5333f4f9f9c16faabfd1e94c1 -p arch-to-parquet-example-jovyan', 'logs_cmd': 'mlrun logs cb1962a5333f4f9f9c16faabfd1e94c1 -p arch-to-parquet-example-jovyan'}
+> 2022-12-25 11:14:45,144 [info] run executed, status=completed
+final state: completed
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+arch-to-parquet-example-jovyan
+
+0
+Dec 25 11:14:44
+completed
+arc-to-parquet-arc_to_parquet
+kind=job
owner=jovyan
mlrun/client_version=1.2.1-rc7
host=arc-to-parquet-arc-to-parquet-8kz4b
+archive_url
+key=higgs-sample
+
+higgs-sample
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2022-12-25 11:14:47,549 [info] run executed, status=completed
+
+
+
+
+
+Show the results
+
+
+
+
+
+
+
+
+
+Unnamed: 0
+1.000000000000000000e+00
+8.692932128906250000e-01
+-6.350818276405334473e-01
+2.256902605295181274e-01
+3.274700641632080078e-01
+-6.899932026863098145e-01
+7.542022466659545898e-01
+-2.485731393098831177e-01
+-1.092063903808593750e+00
+...
+-1.045456994324922562e-02
+-4.576716944575309753e-02
+3.101961374282836914e+00
+1.353760004043579102e+00
+9.795631170272827148e-01
+9.780761599540710449e-01
+9.200048446655273438e-01
+7.216574549674987793e-01
+9.887509346008300781e-01
+8.766783475875854492e-01
+
+
+
+
+0
+0
+1.0
+0.907542
+0.329147
+0.359412
+1.497970
+-0.313010
+1.095531
+-0.557525
+-1.588230
+...
+-1.138930
+-0.000819
+0.000000
+0.302220
+0.833048
+0.985700
+0.978098
+0.779732
+0.992356
+0.798343
+
+
+1
+1
+1.0
+0.798835
+1.470639
+-1.635975
+0.453773
+0.425629
+1.104875
+1.282322
+1.381664
+...
+1.128848
+0.900461
+0.000000
+0.909753
+1.108330
+0.985692
+0.951331
+0.803252
+0.865924
+0.780118
+
+
+2
+2
+0.0
+1.344385
+-0.876626
+0.935913
+1.992050
+0.882454
+1.786066
+-1.646778
+-0.942383
+...
+-0.678379
+-1.360356
+0.000000
+0.946652
+1.028704
+0.998656
+0.728281
+0.869200
+1.026736
+0.957904
+
+
+3
+3
+1.0
+1.105009
+0.321356
+1.522401
+0.882808
+-1.205349
+0.681466
+-1.070464
+-0.921871
+...
+-0.373566
+0.113041
+0.000000
+0.755856
+1.361057
+0.986610
+0.838085
+1.133295
+0.872245
+0.808487
+
+
+4
+4
+0.0
+1.595839
+-0.607811
+0.007075
+1.818450
+-0.111906
+0.847550
+-0.566437
+1.581239
+...
+-0.654227
+-1.274345
+3.101961
+0.823761
+0.938191
+0.971758
+0.789176
+0.430553
+0.961357
+0.957818
+
+
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+
+
+95
+95
+1.0
+0.708794
+0.850221
+0.672354
+0.948589
+-1.137755
+1.240911
+0.416861
+1.581794
+...
+1.461144
+-0.758832
+0.000000
+0.971662
+0.856350
+1.134024
+0.949969
+1.594826
+1.048655
+0.922793
+
+
+96
+96
+0.0
+1.135022
+0.285319
+-1.109411
+1.088544
+-0.896261
+1.103134
+0.126724
+0.964220
+...
+-1.183070
+-0.956380
+1.550981
+0.883162
+0.925714
+0.986575
+1.057785
+0.599632
+0.887197
+0.970676
+
+
+97
+97
+1.0
+1.124042
+0.354470
+0.039812
+1.132499
+1.620306
+0.955921
+1.375404
+0.415942
+...
+-0.175354
+1.561916
+0.000000
+0.851553
+1.251061
+1.546395
+0.743475
+0.138550
+0.717625
+0.746045
+
+
+98
+98
+1.0
+0.341495
+-1.223359
+-1.372971
+0.993666
+0.691938
+1.086187
+0.318829
+-1.185753
+...
+1.305406
+0.426011
+0.000000
+1.429510
+0.975100
+0.988090
+1.257337
+1.353208
+1.040413
+0.962988
+
+
+99
+99
+0.0
+1.217926
+-0.307828
+-1.601573
+1.532369
+-1.006824
+0.555781
+-0.059439
+0.819528
+...
+-1.487883
+0.811120
+0.000000
+0.627298
+0.812112
+0.989371
+0.704444
+0.573487
+0.708875
+0.764996
+
+
+
+
100 rows × 30 columns
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/static/function.html b/functions/master/arc_to_parquet/1.5.0/static/function.html
new file mode 100644
index 00000000..998b172d
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/static/function.html
@@ -0,0 +1,135 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+verbose: false
+metadata:
+ tag: ''
+ name: arc-to-parquet
+ categories:
+ - utils
+kind: job
+spec:
+ command: ''
+ default_handler: arc_to_parquet
+ entry_points:
+ arc_to_parquet:
+ has_varargs: false
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: the function context
+ - name: archive_url
+ type: DataItem
+ doc: MLRun data input (DataItem object)
+ - name: header
+ type: List[str]
+ default:
+ - null
+ - name: chunksize
+ type: int
+ doc: (0) when > 0, row size (chunk) to retrieve per iteration
+ default: 0
+ - name: dtype
+ default: null
+ - name: encoding
+ type: str
+ default: latin-1
+ - name: key
+ type: str
+ doc: key in artifact store (when log_data=True)
+ default: data
+ - name: dataset
+ type: str
+ doc: (None) if not None then "target_path/dataset" is folder for partitioned
+ files
+ default: None
+ - name: part_cols
+ doc: ([]) list of partitioning columns
+ default: []
+ - name: file_ext
+ type: str
+ doc: (parquet) csv/parquet file extension
+ default: parquet
+ - name: index
+ type: bool
+ doc: (False) pandas save index option
+ default: false
+ - name: refresh_data
+ type: bool
+ doc: (False) overwrite existing data at that location
+ default: false
+ - name: stats
+ type: bool
+ doc: (None) calculate table stats when logging artifact
+ default: false
+ lineno: 68
+ outputs:
+ - type: None
+ name: arc_to_parquet
+ has_kwargs: false
+ doc: 'Open a file/object archive and save as a parquet file or dataset
+
+
+ Notes
+
+ -----
+
+ * this function is typically for large files, please be sure to check all
+ settings
+
+ * partitioning requires precise specification of column types.
+
+ * the archive_url can be any file readable by pandas read_csv, which includes
+ tar files
+
+ * if the `dataset` parameter is not empty, then a partitioned dataset will
+ be created
+
+ instead of a single file in the folder `dataset`
+
+ * if a key exists already then it will not be re-acquired unless the `refresh_data`
+ param
+
+ is set to `True`. This is in case the original file is corrupt, or a refresh
+ is
+
+ required.'
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgcHlhcnJvdy5wYXJxdWV0IGFzIHBxCmltcG9ydCBweWFycm93IGFzIHBhCmltcG9ydCBudW1weSBhcyBucAoKCmZyb20gbWxydW4uZXhlY3V0aW9uIGltcG9ydCBNTENsaWVudEN0eApmcm9tIG1scnVuLmRhdGFzdG9yZSBpbXBvcnQgRGF0YUl0ZW0KCmZyb20gdHlwaW5nIGltcG9ydCBMaXN0CmltcG9ydCBvcwoKCgpkZWYgX2NodW5rX3JlYWR3cml0ZSgKICAgICAgICBhcmNoaXZlX3VybCwKICAgICAgICBkZXN0X3BhdGgsCiAgICAgICAgY2h1bmtzaXplLAogICAgICAgIGhlYWRlciwKICAgICAgICBlbmNvZGluZywKICAgICAgICBkdHlwZSwKICAgICAgICBkYXRhc2V0Cik6CiAgICAiIiJzdHJlYW0gcmVhZCBhbmQgd3JpdGUgYXJjaGl2ZXMKCiAgICBwYW5kYXMgcmVhZHMgYW5kIHBhcnF1ZXQgd3JpdGVzCgogICAgbm90ZXMKICAgIC0tLS0tCiAgICAqIGRlc3RfcGF0aCBjYW4gYmUgZWl0aGVyIGEgZmlsZS5wYXJxdWV0LCBvciBpbiBodGUgY2FzZSBvZiBwYXJ0aXRpb25lZCBwYXJxdWV0CiAgICAgIGl0IHdpbGwgYmUgb25seSB0aGUgZGVzdGluYXRpb24gZm9sZGVyIG9mIHRoZSBwYXJxdWV0IHBhcnRpdGlvbiBmaWxlcwogICAgIiIiCiAgICBwcXdyaXRlciA9IE5vbmUKICAgIGhlYWRlciA9IFtdCiAgICBmb3IgaSwgZGYgaW4gZW51bWVyYXRlKHBkLnJlYWRfY3N2KGFyY2hpdmVfdXJsLCBjaHVua3NpemU9Y2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lcz1oZWFkZXIsIGVuY29kaW5nPWVuY29kaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1kdHlwZSkpOgogICAgICAgIHRhYmxlID0gcGEuVGFibGUuZnJvbV9wYW5kYXMoZGYpCiAgICAgICAgaWYgaSA9PSAwOgogICAgICAgICAgICBpZiBkYXRhc2V0OgogICAgICAgICAgICAgICAgaGVhZGVyID0gbnAuY29weSh0YWJsZS5zY2hlbWEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBwcXdyaXRlciA9IHBxLlBhcnF1ZXRXcml0ZXIoZGVzdF9wYXRoLCB0YWJsZS5zY2hlbWEpCiAgICAgICAgaWYgZGF0YXNldDoKICAgICAgICAgICAgcHEud3JpdGVfdG9fZGF0YXNldCh0YWJsZSwgcm9vdF9wYXRoPWRlc3RfcGF0aCwgcGFydGl0aW9uX2NvbHM9cGFydGl0aW9uX2NvbHMpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgcHF3cml0ZXIud3JpdGVfdGFibGUodGFibGUpCiAgICBpZiBwcXdyaXRlcjoKICAgICAgICBwcXdyaXRlci5jbG9zZSgpCgogICAgcmV0dXJuIGhlYWRlcgoKCmRlZiBhcmNfdG9fcGFycXVldCgKICAgICAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgICAgICBhcmNoaXZlX3VybDogRGF0YUl0ZW0sCiAgICAgICAgaGVhZGVyOiBMaXN0W3N0cl0gPSBbTm9uZV0sCiAgICAgICAgY2h1bmtzaXplOiBpbnQgPSAwLAogICAgICAgIGR0eXBlPU5vbmUsCiAgICAgICAgZW5jb2Rpbmc6IHN0ciA9ICJsYXRpbi0xIiwKICAgICAgICBrZXk6IHN0ciA9ICJkYXRhIiwKICAgICAgICBkYXRhc2V0OiBzdHIgPSAiTm9uZSIsCiAgICAgICAgcGFydF9jb2xzPVtdLAogICAgICAgIGZpbGVfZXh0OiBzdHIgPSAicGFycXVldCIsCiAgICAgICAgaW5kZXg6IGJvb2wgPSBGYWxzZSwKICAgICAgICByZWZyZXNoX2RhdGE6IGJvb2wgPSBGYWxzZSwKICAgICAgICBzdGF0czogYm9vbCA9IEZhbHNlCikgLT4gTm9uZToKICAgICIiIk9wZW4gYSBmaWxlL29iamVjdCBhcmNoaXZlIGFuZCBzYXZlIGFzIGEgcGFycXVldCBmaWxlIG9yIGRhdGFzZXQKCiAgICBOb3RlcwogICAgLS0tLS0KICAgICogdGhpcyBmdW5jdGlvbiBpcyB0eXBpY2FsbHkgZm9yIGxhcmdlIGZpbGVzLCBwbGVhc2UgYmUgc3VyZSB0byBjaGVjayBhbGwgc2V0dGluZ3MKICAgICogcGFydGl0aW9uaW5nIHJlcXVpcmVzIHByZWNpc2Ugc3BlY2lmaWNhdGlvbiBvZiBjb2x1bW4gdHlwZXMuCiAgICAqIHRoZSBhcmNoaXZlX3VybCBjYW4gYmUgYW55IGZpbGUgcmVhZGFibGUgYnkgcGFuZGFzIHJlYWRfY3N2LCB3aGljaCBpbmNsdWRlcyB0YXIgZmlsZXMKICAgICogaWYgdGhlIGBkYXRhc2V0YCBwYXJhbWV0ZXIgaXMgbm90IGVtcHR5LCB0aGVuIGEgcGFydGl0aW9uZWQgZGF0YXNldCB3aWxsIGJlIGNyZWF0ZWQKICAgIGluc3RlYWQgb2YgYSBzaW5nbGUgZmlsZSBpbiB0aGUgZm9sZGVyIGBkYXRhc2V0YAogICAgKiBpZiBhIGtleSBleGlzdHMgYWxyZWFkeSB0aGVuIGl0IHdpbGwgbm90IGJlIHJlLWFjcXVpcmVkIHVubGVzcyB0aGUgYHJlZnJlc2hfZGF0YWAgcGFyYW0KICAgIGlzIHNldCB0byBgVHJ1ZWAuICBUaGlzIGlzIGluIGNhc2UgdGhlIG9yaWdpbmFsIGZpbGUgaXMgY29ycnVwdCwgb3IgYSByZWZyZXNoIGlzCiAgICByZXF1aXJlZC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgIHRoZSBmdW5jdGlvbiBjb250ZXh0CiAgICA6cGFyYW0gYXJjaGl2ZV91cmw6ICAgIE1MUnVuIGRhdGEgaW5wdXQgKERhdGFJdGVtIG9iamVjdCkKICAgIDpwYXJhbSBjaHVua3NpemU6ICAgICAgKDApIHdoZW4gPiAwLCByb3cgc2l6ZSAoY2h1bmspIHRvIHJldHJpZXZlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHBlciBpdGVyYXRpb24KICAgIDpwYXJhbSBkdHlwZSAgICAgICAgICAgZGVzdGluYXRpb24gZGF0YSB0eXBlIG9mIHNwZWNpZmllZCBjb2x1bW5zCiAgICA6cGFyYW0gZW5jb2RpbmcgICAgICAgICgibGF0aW4tOCIpIGZpbGUgZW5jb2RpbmcKICAgIDpwYXJhbSBrZXk6ICAgICAgICAgICAga2V5IGluIGFydGlmYWN0IHN0b3JlICh3aGVuIGxvZ19kYXRhPVRydWUpCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgIChOb25lKSBpZiBub3QgTm9uZSB0aGVuICJ0YXJnZXRfcGF0aC9kYXRhc2V0IgogICAgICAgICAgICAgICAgICAgICAgICAgICBpcyBmb2xkZXIgZm9yIHBhcnRpdGlvbmVkIGZpbGVzCiAgICA6cGFyYW0gcGFydF9jb2xzOiAgICAgIChbXSkgbGlzdCBvZiBwYXJ0aXRpb25pbmcgY29sdW1ucwogICAgOnBhcmFtIGZpbGVfZXh0OiAgICAgICAocGFycXVldCkgY3N2L3BhcnF1ZXQgZmlsZSBleHRlbnNpb24KICAgIDpwYXJhbSBpbmRleDogICAgICAgICAgKEZhbHNlKSBwYW5kYXMgc2F2ZSBpbmRleCBvcHRpb24KICAgIDpwYXJhbSByZWZyZXNoX2RhdGE6ICAgKEZhbHNlKSBvdmVyd3JpdGUgZXhpc3RpbmcgZGF0YSBhdCB0aGF0IGxvY2F0aW9uCiAgICA6cGFyYW0gc3RhdHM6ICAgICAgICAgIChOb25lKSBjYWxjdWxhdGUgdGFibGUgc3RhdHMgd2hlbiBsb2dnaW5nIGFydGlmYWN0CiAgICAiIiIKICAgIGJhc2VfcGF0aCA9IGNvbnRleHQuYXJ0aWZhY3RfcGF0aAogICAgb3MubWFrZWRpcnMoYmFzZV9wYXRoLCBleGlzdF9vaz1UcnVlKQoKICAgIGFyY2hpdmVfdXJsID0gYXJjaGl2ZV91cmwubG9jYWwoKQoKICAgIGlmIGRhdGFzZXQgaXMgbm90IE5vbmU6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwgZGF0YXNldCkKICAgICAgICBleGlzdHMgPSBvcy5wYXRoLmlzZGlyKGRlc3RfcGF0aCkKICAgIGVsc2U6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwga2V5ICsgZiIue2ZpbGVfZXh0fSIpCiAgICAgICAgZXhpc3RzID0gb3MucGF0aC5pc2ZpbGUoZGVzdF9wYXRoKQoKICAgIGlmIG5vdCBleGlzdHM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiZGVzdGluYXRpb24gZmlsZSBkb2VzIG5vdCBleGlzdCwgZG93bmxvYWRpbmciKQogICAgICAgIGlmIGNodW5rc2l6ZSA+IDA6CiAgICAgICAgICAgIGhlYWRlciA9IF9jaHVua19yZWFkd3JpdGUoYXJjaGl2ZV91cmwsIGRlc3RfcGF0aCwgY2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVuY29kaW5nLCBkdHlwZSwgZGF0YXNldCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXk9a2V5LCBzdGF0cz1zdGF0cywgZm9ybWF0PSdwYXJxdWV0JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YXJnZXRfcGF0aD1kZXN0X3BhdGgpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgZGYgPSBwZC5yZWFkX2NzdihhcmNoaXZlX3VybCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXksIGRmPWRmLCBmb3JtYXQ9ZmlsZV9leHQsIGluZGV4PWluZGV4KQogICAgZWxzZToKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKCJkZXN0aW5hdGlvbiBmaWxlIGFscmVhZHkgZXhpc3RzLCBub3RoaW5nIGRvbmUiKQ==
+ code_origin: ''
+ origin_filename: ''
+ description: retrieve remote archive, open and save as parquet
+ disable_auto_mount: false
+ image: mlrun/mlrun
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/static/item.html b/functions/master/arc_to_parquet/1.5.0/static/item.html
new file mode 100644
index 00000000..f5e22a54
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/static/item.html
@@ -0,0 +1,59 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+apiVersion: v1
+categories:
+- utils
+description: retrieve remote archive, open and save as parquet
+doc: ''
+example: arc_to_parquet.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ author: avi
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.7.0
+name: arc-to-parquet
+platformVersion: 3.5.4
+spec:
+ filename: arc_to_parquet.py
+ handler: arc_to_parquet
+ image: mlrun/mlrun
+ kind: job
+ requirements: []
+url: ''
+version: 1.5.0
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/1.5.0/static/source.html b/functions/master/arc_to_parquet/1.5.0/static/source.html
new file mode 100644
index 00000000..bc20fefd
--- /dev/null
+++ b/functions/master/arc_to_parquet/1.5.0/static/source.html
@@ -0,0 +1,168 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import pandas as pd
+import pyarrow.parquet as pq
+import pyarrow as pa
+import numpy as np
+
+
+from mlrun.execution import MLClientCtx
+from mlrun.datastore import DataItem
+
+from typing import List
+import os
+
+
+
+def _chunk_readwrite(
+ archive_url,
+ dest_path,
+ chunksize,
+ header,
+ encoding,
+ dtype,
+ dataset
+):
+ """stream read and write archives
+
+ pandas reads and parquet writes
+
+ notes
+ -----
+ * dest_path can be either a file.parquet, or in hte case of partitioned parquet
+ it will be only the destination folder of the parquet partition files
+ """
+ pqwriter = None
+ header = []
+ for i, df in enumerate(pd.read_csv(archive_url, chunksize=chunksize,
+ names=header, encoding=encoding,
+ dtype=dtype)):
+ table = pa.Table.from_pandas(df)
+ if i == 0:
+ if dataset:
+ header = np.copy(table.schema)
+ else:
+ pqwriter = pq.ParquetWriter(dest_path, table.schema)
+ if dataset:
+ pq.write_to_dataset(table, root_path=dest_path, partition_cols=partition_cols)
+ else:
+ pqwriter.write_table(table)
+ if pqwriter:
+ pqwriter.close()
+
+ return header
+
+
+def arc_to_parquet(
+ context: MLClientCtx,
+ archive_url: DataItem,
+ header: List[str] = [None],
+ chunksize: int = 0,
+ dtype=None,
+ encoding: str = "latin-1",
+ key: str = "data",
+ dataset: str = "None",
+ part_cols=[],
+ file_ext: str = "parquet",
+ index: bool = False,
+ refresh_data: bool = False,
+ stats: bool = False
+) -> None:
+ """Open a file/object archive and save as a parquet file or dataset
+
+ Notes
+ -----
+ * this function is typically for large files, please be sure to check all settings
+ * partitioning requires precise specification of column types.
+ * the archive_url can be any file readable by pandas read_csv, which includes tar files
+ * if the `dataset` parameter is not empty, then a partitioned dataset will be created
+ instead of a single file in the folder `dataset`
+ * if a key exists already then it will not be re-acquired unless the `refresh_data` param
+ is set to `True`. This is in case the original file is corrupt, or a refresh is
+ required.
+
+ :param context: the function context
+ :param archive_url: MLRun data input (DataItem object)
+ :param chunksize: (0) when > 0, row size (chunk) to retrieve
+ per iteration
+ :param dtype destination data type of specified columns
+ :param encoding ("latin-8") file encoding
+ :param key: key in artifact store (when log_data=True)
+ :param dataset: (None) if not None then "target_path/dataset"
+ is folder for partitioned files
+ :param part_cols: ([]) list of partitioning columns
+ :param file_ext: (parquet) csv/parquet file extension
+ :param index: (False) pandas save index option
+ :param refresh_data: (False) overwrite existing data at that location
+ :param stats: (None) calculate table stats when logging artifact
+ """
+ base_path = context.artifact_path
+ os.makedirs(base_path, exist_ok=True)
+
+ archive_url = archive_url.local()
+
+ if dataset is not None:
+ dest_path = os.path.join(base_path, dataset)
+ exists = os.path.isdir(dest_path)
+ else:
+ dest_path = os.path.join(base_path, key + f".{file_ext}")
+ exists = os.path.isfile(dest_path)
+
+ if not exists:
+ context.logger.info("destination file does not exist, downloading")
+ if chunksize > 0:
+ header = _chunk_readwrite(archive_url, dest_path, chunksize,
+ encoding, dtype, dataset)
+ context.log_dataset(key=key, stats=stats, format='parquet',
+ target_path=dest_path)
+ else:
+ df = pd.read_csv(archive_url)
+ context.log_dataset(key, df=df, format=file_ext, index=index)
+ else:
+ context.logger.info("destination file already exists, nothing done")
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/arc_to_parquet/latest/src/function.yaml b/functions/master/arc_to_parquet/latest/src/function.yaml
index f76d0494..d10e841c 100644
--- a/functions/master/arc_to_parquet/latest/src/function.yaml
+++ b/functions/master/arc_to_parquet/latest/src/function.yaml
@@ -1,62 +1,23 @@
-kind: job
+verbose: false
metadata:
- name: arc-to-parquet
tag: ''
- hash: 959e5c3513bb7568402b6ce4023f4615e224b566
- project: ''
- labels:
- author: avi
+ name: arc-to-parquet
categories:
- - etl
+ - utils
+kind: job
spec:
command: ''
- args: []
- image: mlrun/mlrun
- build:
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgcHlhcnJvdy5wYXJxdWV0IGFzIHBxCmltcG9ydCBweWFycm93IGFzIHBhCmltcG9ydCBudW1weSBhcyBucAoKCmZyb20gbWxydW4uZXhlY3V0aW9uIGltcG9ydCBNTENsaWVudEN0eApmcm9tIG1scnVuLmRhdGFzdG9yZSBpbXBvcnQgRGF0YUl0ZW0KCmZyb20gdHlwaW5nIGltcG9ydCBMaXN0CmltcG9ydCBvcwoKCgpkZWYgX2NodW5rX3JlYWR3cml0ZSgKICAgICAgICBhcmNoaXZlX3VybCwKICAgICAgICBkZXN0X3BhdGgsCiAgICAgICAgY2h1bmtzaXplLAogICAgICAgIGhlYWRlciwKICAgICAgICBlbmNvZGluZywKICAgICAgICBkdHlwZSwKICAgICAgICBkYXRhc2V0Cik6CiAgICAiIiJzdHJlYW0gcmVhZCBhbmQgd3JpdGUgYXJjaGl2ZXMKCiAgICBwYW5kYXMgcmVhZHMgYW5kIHBhcnF1ZXQgd3JpdGVzCgogICAgbm90ZXMKICAgIC0tLS0tCiAgICAqIGRlc3RfcGF0aCBjYW4gYmUgZWl0aGVyIGEgZmlsZS5wYXJxdWV0LCBvciBpbiBodGUgY2FzZSBvZiBwYXJ0aXRpb25lZCBwYXJxdWV0CiAgICAgIGl0IHdpbGwgYmUgb25seSB0aGUgZGVzdGluYXRpb24gZm9sZGVyIG9mIHRoZSBwYXJxdWV0IHBhcnRpdGlvbiBmaWxlcwogICAgIiIiCiAgICBwcXdyaXRlciA9IE5vbmUKICAgIGhlYWRlciA9IFtdCiAgICBmb3IgaSwgZGYgaW4gZW51bWVyYXRlKHBkLnJlYWRfY3N2KGFyY2hpdmVfdXJsLCBjaHVua3NpemU9Y2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lcz1oZWFkZXIsIGVuY29kaW5nPWVuY29kaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1kdHlwZSkpOgogICAgICAgIHRhYmxlID0gcGEuVGFibGUuZnJvbV9wYW5kYXMoZGYpCiAgICAgICAgaWYgaSA9PSAwOgogICAgICAgICAgICBpZiBkYXRhc2V0OgogICAgICAgICAgICAgICAgaGVhZGVyID0gbnAuY29weSh0YWJsZS5zY2hlbWEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBwcXdyaXRlciA9IHBxLlBhcnF1ZXRXcml0ZXIoZGVzdF9wYXRoLCB0YWJsZS5zY2hlbWEpCiAgICAgICAgaWYgZGF0YXNldDoKICAgICAgICAgICAgcHEud3JpdGVfdG9fZGF0YXNldCh0YWJsZSwgcm9vdF9wYXRoPWRlc3RfcGF0aCwgcGFydGl0aW9uX2NvbHM9cGFydGl0aW9uX2NvbHMpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgcHF3cml0ZXIud3JpdGVfdGFibGUodGFibGUpCiAgICBpZiBwcXdyaXRlcjoKICAgICAgICBwcXdyaXRlci5jbG9zZSgpCgogICAgcmV0dXJuIGhlYWRlcgoKCmRlZiBhcmNfdG9fcGFycXVldCgKICAgICAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgICAgICBhcmNoaXZlX3VybDogRGF0YUl0ZW0sCiAgICAgICAgaGVhZGVyOiBMaXN0W3N0cl0gPSBbTm9uZV0sCiAgICAgICAgY2h1bmtzaXplOiBpbnQgPSAwLAogICAgICAgIGR0eXBlPU5vbmUsCiAgICAgICAgZW5jb2Rpbmc6IHN0ciA9ICJsYXRpbi0xIiwKICAgICAgICBrZXk6IHN0ciA9ICJkYXRhIiwKICAgICAgICBkYXRhc2V0OiBzdHIgPSAiTm9uZSIsCiAgICAgICAgcGFydF9jb2xzPVtdLAogICAgICAgIGZpbGVfZXh0OiBzdHIgPSAicGFycXVldCIsCiAgICAgICAgaW5kZXg6IGJvb2wgPSBGYWxzZSwKICAgICAgICByZWZyZXNoX2RhdGE6IGJvb2wgPSBGYWxzZSwKICAgICAgICBzdGF0czogYm9vbCA9IEZhbHNlCikgLT4gTm9uZToKICAgICIiIk9wZW4gYSBmaWxlL29iamVjdCBhcmNoaXZlIGFuZCBzYXZlIGFzIGEgcGFycXVldCBmaWxlIG9yIGRhdGFzZXQKCiAgICBOb3RlcwogICAgLS0tLS0KICAgICogdGhpcyBmdW5jdGlvbiBpcyB0eXBpY2FsbHkgZm9yIGxhcmdlIGZpbGVzLCBwbGVhc2UgYmUgc3VyZSB0byBjaGVjayBhbGwgc2V0dGluZ3MKICAgICogcGFydGl0aW9uaW5nIHJlcXVpcmVzIHByZWNpc2Ugc3BlY2lmaWNhdGlvbiBvZiBjb2x1bW4gdHlwZXMuCiAgICAqIHRoZSBhcmNoaXZlX3VybCBjYW4gYmUgYW55IGZpbGUgcmVhZGFibGUgYnkgcGFuZGFzIHJlYWRfY3N2LCB3aGljaCBpbmNsdWRlcyB0YXIgZmlsZXMKICAgICogaWYgdGhlIGBkYXRhc2V0YCBwYXJhbWV0ZXIgaXMgbm90IGVtcHR5LCB0aGVuIGEgcGFydGl0aW9uZWQgZGF0YXNldCB3aWxsIGJlIGNyZWF0ZWQKICAgIGluc3RlYWQgb2YgYSBzaW5nbGUgZmlsZSBpbiB0aGUgZm9sZGVyIGBkYXRhc2V0YAogICAgKiBpZiBhIGtleSBleGlzdHMgYWxyZWFkeSB0aGVuIGl0IHdpbGwgbm90IGJlIHJlLWFjcXVpcmVkIHVubGVzcyB0aGUgYHJlZnJlc2hfZGF0YWAgcGFyYW0KICAgIGlzIHNldCB0byBgVHJ1ZWAuICBUaGlzIGlzIGluIGNhc2UgdGhlIG9yaWdpbmFsIGZpbGUgaXMgY29ycnVwdCwgb3IgYSByZWZyZXNoIGlzCiAgICByZXF1aXJlZC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgIHRoZSBmdW5jdGlvbiBjb250ZXh0CiAgICA6cGFyYW0gYXJjaGl2ZV91cmw6ICAgIE1MUnVuIGRhdGEgaW5wdXQgKERhdGFJdGVtIG9iamVjdCkKICAgIDpwYXJhbSBjaHVua3NpemU6ICAgICAgKDApIHdoZW4gPiAwLCByb3cgc2l6ZSAoY2h1bmspIHRvIHJldHJpZXZlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHBlciBpdGVyYXRpb24KICAgIDpwYXJhbSBkdHlwZSAgICAgICAgICAgZGVzdGluYXRpb24gZGF0YSB0eXBlIG9mIHNwZWNpZmllZCBjb2x1bW5zCiAgICA6cGFyYW0gZW5jb2RpbmcgICAgICAgICgibGF0aW4tOCIpIGZpbGUgZW5jb2RpbmcKICAgIDpwYXJhbSBrZXk6ICAgICAgICAgICAga2V5IGluIGFydGlmYWN0IHN0b3JlICh3aGVuIGxvZ19kYXRhPVRydWUpCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgIChOb25lKSBpZiBub3QgTm9uZSB0aGVuICJ0YXJnZXRfcGF0aC9kYXRhc2V0IgogICAgICAgICAgICAgICAgICAgICAgICAgICBpcyBmb2xkZXIgZm9yIHBhcnRpdGlvbmVkIGZpbGVzCiAgICA6cGFyYW0gcGFydF9jb2xzOiAgICAgIChbXSkgbGlzdCBvZiBwYXJ0aXRpb25pbmcgY29sdW1ucwogICAgOnBhcmFtIGZpbGVfZXh0OiAgICAgICAocGFycXVldCkgY3N2L3BhcnF1ZXQgZmlsZSBleHRlbnNpb24KICAgIDpwYXJhbSBpbmRleDogICAgICAgICAgKEZhbHNlKSBwYW5kYXMgc2F2ZSBpbmRleCBvcHRpb24KICAgIDpwYXJhbSByZWZyZXNoX2RhdGE6ICAgKEZhbHNlKSBvdmVyd3JpdGUgZXhpc3RpbmcgZGF0YSBhdCB0aGF0IGxvY2F0aW9uCiAgICA6cGFyYW0gc3RhdHM6ICAgICAgICAgIChOb25lKSBjYWxjdWxhdGUgdGFibGUgc3RhdHMgd2hlbiBsb2dnaW5nIGFydGlmYWN0CiAgICAiIiIKICAgIGJhc2VfcGF0aCA9IGNvbnRleHQuYXJ0aWZhY3RfcGF0aAogICAgb3MubWFrZWRpcnMoYmFzZV9wYXRoLCBleGlzdF9vaz1UcnVlKQoKICAgIGFyY2hpdmVfdXJsID0gYXJjaGl2ZV91cmwubG9jYWwoKQoKICAgIGlmIGRhdGFzZXQgaXMgbm90IE5vbmU6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwgZGF0YXNldCkKICAgICAgICBleGlzdHMgPSBvcy5wYXRoLmlzZGlyKGRlc3RfcGF0aCkKICAgIGVsc2U6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwga2V5ICsgZiIue2ZpbGVfZXh0fSIpCiAgICAgICAgZXhpc3RzID0gb3MucGF0aC5pc2ZpbGUoZGVzdF9wYXRoKQoKICAgIGlmIG5vdCBleGlzdHM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiZGVzdGluYXRpb24gZmlsZSBkb2VzIG5vdCBleGlzdCwgZG93bmxvYWRpbmciKQogICAgICAgIGlmIGNodW5rc2l6ZSA+IDA6CiAgICAgICAgICAgIGhlYWRlciA9IF9jaHVua19yZWFkd3JpdGUoYXJjaGl2ZV91cmwsIGRlc3RfcGF0aCwgY2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVuY29kaW5nLCBkdHlwZSwgZGF0YXNldCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXk9a2V5LCBzdGF0cz1zdGF0cywgZm9ybWF0PSdwYXJxdWV0JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YXJnZXRfcGF0aD1kZXN0X3BhdGgpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgZGYgPSBwZC5yZWFkX2NzdihhcmNoaXZlX3VybCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXksIGRmPWRmLCBmb3JtYXQ9ZmlsZV9leHQsIGluZGV4PWluZGV4KQogICAgZWxzZToKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKCJkZXN0aW5hdGlvbiBmaWxlIGFscmVhZHkgZXhpc3RzLCBub3RoaW5nIGRvbmUiKQ==
- commands: []
- code_origin: http://github.com/aviaIguazio/functions.git#b32ae36ee9e5fb7a3b0affa8c15046aae9df7d24:/Users/Avi_Asulin/PycharmProjects/functions/arc_to_parquet/arc_to_parquet.py
- origin_filename: /Users/Avi_Asulin/PycharmProjects/functions/arc_to_parquet/arc_to_parquet.py
- requirements: []
+ default_handler: arc_to_parquet
entry_points:
arc_to_parquet:
- name: arc_to_parquet
- doc: 'Open a file/object archive and save as a parquet file or dataset
-
-
- Notes
-
- -----
-
- * this function is typically for large files, please be sure to check all
- settings
-
- * partitioning requires precise specification of column types.
-
- * the archive_url can be any file readable by pandas read_csv, which includes
- tar files
-
- * if the `dataset` parameter is not empty, then a partitioned dataset will
- be created
-
- instead of a single file in the folder `dataset`
-
- * if a key exists already then it will not be re-acquired unless the `refresh_data`
- param
-
- is set to `True`. This is in case the original file is corrupt, or a refresh
- is
-
- required.'
+ has_varargs: false
parameters:
- name: context
type: MLClientCtx
doc: the function context
- default: ''
- name: archive_url
type: DataItem
doc: MLRun data input (DataItem object)
- default: ''
- name: header
type: List[str]
default:
@@ -98,17 +59,42 @@ spec:
type: bool
doc: (None) calculate table stats when logging artifact
default: false
- outputs:
- - default: ''
lineno: 68
+ outputs:
+ - type: None
+ name: arc_to_parquet
+ has_kwargs: false
+ doc: 'Open a file/object archive and save as a parquet file or dataset
+
+
+ Notes
+
+ -----
+
+ * this function is typically for large files, please be sure to check all
+ settings
+
+ * partitioning requires precise specification of column types.
+
+ * the archive_url can be any file readable by pandas read_csv, which includes
+ tar files
+
+ * if the `dataset` parameter is not empty, then a partitioned dataset will
+ be created
+
+ instead of a single file in the folder `dataset`
+
+ * if a key exists already then it will not be re-acquired unless the `refresh_data`
+ param
+
+ is set to `True`. This is in case the original file is corrupt, or a refresh
+ is
+
+ required.'
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgcHlhcnJvdy5wYXJxdWV0IGFzIHBxCmltcG9ydCBweWFycm93IGFzIHBhCmltcG9ydCBudW1weSBhcyBucAoKCmZyb20gbWxydW4uZXhlY3V0aW9uIGltcG9ydCBNTENsaWVudEN0eApmcm9tIG1scnVuLmRhdGFzdG9yZSBpbXBvcnQgRGF0YUl0ZW0KCmZyb20gdHlwaW5nIGltcG9ydCBMaXN0CmltcG9ydCBvcwoKCgpkZWYgX2NodW5rX3JlYWR3cml0ZSgKICAgICAgICBhcmNoaXZlX3VybCwKICAgICAgICBkZXN0X3BhdGgsCiAgICAgICAgY2h1bmtzaXplLAogICAgICAgIGhlYWRlciwKICAgICAgICBlbmNvZGluZywKICAgICAgICBkdHlwZSwKICAgICAgICBkYXRhc2V0Cik6CiAgICAiIiJzdHJlYW0gcmVhZCBhbmQgd3JpdGUgYXJjaGl2ZXMKCiAgICBwYW5kYXMgcmVhZHMgYW5kIHBhcnF1ZXQgd3JpdGVzCgogICAgbm90ZXMKICAgIC0tLS0tCiAgICAqIGRlc3RfcGF0aCBjYW4gYmUgZWl0aGVyIGEgZmlsZS5wYXJxdWV0LCBvciBpbiBodGUgY2FzZSBvZiBwYXJ0aXRpb25lZCBwYXJxdWV0CiAgICAgIGl0IHdpbGwgYmUgb25seSB0aGUgZGVzdGluYXRpb24gZm9sZGVyIG9mIHRoZSBwYXJxdWV0IHBhcnRpdGlvbiBmaWxlcwogICAgIiIiCiAgICBwcXdyaXRlciA9IE5vbmUKICAgIGhlYWRlciA9IFtdCiAgICBmb3IgaSwgZGYgaW4gZW51bWVyYXRlKHBkLnJlYWRfY3N2KGFyY2hpdmVfdXJsLCBjaHVua3NpemU9Y2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lcz1oZWFkZXIsIGVuY29kaW5nPWVuY29kaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1kdHlwZSkpOgogICAgICAgIHRhYmxlID0gcGEuVGFibGUuZnJvbV9wYW5kYXMoZGYpCiAgICAgICAgaWYgaSA9PSAwOgogICAgICAgICAgICBpZiBkYXRhc2V0OgogICAgICAgICAgICAgICAgaGVhZGVyID0gbnAuY29weSh0YWJsZS5zY2hlbWEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBwcXdyaXRlciA9IHBxLlBhcnF1ZXRXcml0ZXIoZGVzdF9wYXRoLCB0YWJsZS5zY2hlbWEpCiAgICAgICAgaWYgZGF0YXNldDoKICAgICAgICAgICAgcHEud3JpdGVfdG9fZGF0YXNldCh0YWJsZSwgcm9vdF9wYXRoPWRlc3RfcGF0aCwgcGFydGl0aW9uX2NvbHM9cGFydGl0aW9uX2NvbHMpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgcHF3cml0ZXIud3JpdGVfdGFibGUodGFibGUpCiAgICBpZiBwcXdyaXRlcjoKICAgICAgICBwcXdyaXRlci5jbG9zZSgpCgogICAgcmV0dXJuIGhlYWRlcgoKCmRlZiBhcmNfdG9fcGFycXVldCgKICAgICAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgICAgICBhcmNoaXZlX3VybDogRGF0YUl0ZW0sCiAgICAgICAgaGVhZGVyOiBMaXN0W3N0cl0gPSBbTm9uZV0sCiAgICAgICAgY2h1bmtzaXplOiBpbnQgPSAwLAogICAgICAgIGR0eXBlPU5vbmUsCiAgICAgICAgZW5jb2Rpbmc6IHN0ciA9ICJsYXRpbi0xIiwKICAgICAgICBrZXk6IHN0ciA9ICJkYXRhIiwKICAgICAgICBkYXRhc2V0OiBzdHIgPSAiTm9uZSIsCiAgICAgICAgcGFydF9jb2xzPVtdLAogICAgICAgIGZpbGVfZXh0OiBzdHIgPSAicGFycXVldCIsCiAgICAgICAgaW5kZXg6IGJvb2wgPSBGYWxzZSwKICAgICAgICByZWZyZXNoX2RhdGE6IGJvb2wgPSBGYWxzZSwKICAgICAgICBzdGF0czogYm9vbCA9IEZhbHNlCikgLT4gTm9uZToKICAgICIiIk9wZW4gYSBmaWxlL29iamVjdCBhcmNoaXZlIGFuZCBzYXZlIGFzIGEgcGFycXVldCBmaWxlIG9yIGRhdGFzZXQKCiAgICBOb3RlcwogICAgLS0tLS0KICAgICogdGhpcyBmdW5jdGlvbiBpcyB0eXBpY2FsbHkgZm9yIGxhcmdlIGZpbGVzLCBwbGVhc2UgYmUgc3VyZSB0byBjaGVjayBhbGwgc2V0dGluZ3MKICAgICogcGFydGl0aW9uaW5nIHJlcXVpcmVzIHByZWNpc2Ugc3BlY2lmaWNhdGlvbiBvZiBjb2x1bW4gdHlwZXMuCiAgICAqIHRoZSBhcmNoaXZlX3VybCBjYW4gYmUgYW55IGZpbGUgcmVhZGFibGUgYnkgcGFuZGFzIHJlYWRfY3N2LCB3aGljaCBpbmNsdWRlcyB0YXIgZmlsZXMKICAgICogaWYgdGhlIGBkYXRhc2V0YCBwYXJhbWV0ZXIgaXMgbm90IGVtcHR5LCB0aGVuIGEgcGFydGl0aW9uZWQgZGF0YXNldCB3aWxsIGJlIGNyZWF0ZWQKICAgIGluc3RlYWQgb2YgYSBzaW5nbGUgZmlsZSBpbiB0aGUgZm9sZGVyIGBkYXRhc2V0YAogICAgKiBpZiBhIGtleSBleGlzdHMgYWxyZWFkeSB0aGVuIGl0IHdpbGwgbm90IGJlIHJlLWFjcXVpcmVkIHVubGVzcyB0aGUgYHJlZnJlc2hfZGF0YWAgcGFyYW0KICAgIGlzIHNldCB0byBgVHJ1ZWAuICBUaGlzIGlzIGluIGNhc2UgdGhlIG9yaWdpbmFsIGZpbGUgaXMgY29ycnVwdCwgb3IgYSByZWZyZXNoIGlzCiAgICByZXF1aXJlZC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgIHRoZSBmdW5jdGlvbiBjb250ZXh0CiAgICA6cGFyYW0gYXJjaGl2ZV91cmw6ICAgIE1MUnVuIGRhdGEgaW5wdXQgKERhdGFJdGVtIG9iamVjdCkKICAgIDpwYXJhbSBjaHVua3NpemU6ICAgICAgKDApIHdoZW4gPiAwLCByb3cgc2l6ZSAoY2h1bmspIHRvIHJldHJpZXZlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHBlciBpdGVyYXRpb24KICAgIDpwYXJhbSBkdHlwZSAgICAgICAgICAgZGVzdGluYXRpb24gZGF0YSB0eXBlIG9mIHNwZWNpZmllZCBjb2x1bW5zCiAgICA6cGFyYW0gZW5jb2RpbmcgICAgICAgICgibGF0aW4tOCIpIGZpbGUgZW5jb2RpbmcKICAgIDpwYXJhbSBrZXk6ICAgICAgICAgICAga2V5IGluIGFydGlmYWN0IHN0b3JlICh3aGVuIGxvZ19kYXRhPVRydWUpCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgIChOb25lKSBpZiBub3QgTm9uZSB0aGVuICJ0YXJnZXRfcGF0aC9kYXRhc2V0IgogICAgICAgICAgICAgICAgICAgICAgICAgICBpcyBmb2xkZXIgZm9yIHBhcnRpdGlvbmVkIGZpbGVzCiAgICA6cGFyYW0gcGFydF9jb2xzOiAgICAgIChbXSkgbGlzdCBvZiBwYXJ0aXRpb25pbmcgY29sdW1ucwogICAgOnBhcmFtIGZpbGVfZXh0OiAgICAgICAocGFycXVldCkgY3N2L3BhcnF1ZXQgZmlsZSBleHRlbnNpb24KICAgIDpwYXJhbSBpbmRleDogICAgICAgICAgKEZhbHNlKSBwYW5kYXMgc2F2ZSBpbmRleCBvcHRpb24KICAgIDpwYXJhbSByZWZyZXNoX2RhdGE6ICAgKEZhbHNlKSBvdmVyd3JpdGUgZXhpc3RpbmcgZGF0YSBhdCB0aGF0IGxvY2F0aW9uCiAgICA6cGFyYW0gc3RhdHM6ICAgICAgICAgIChOb25lKSBjYWxjdWxhdGUgdGFibGUgc3RhdHMgd2hlbiBsb2dnaW5nIGFydGlmYWN0CiAgICAiIiIKICAgIGJhc2VfcGF0aCA9IGNvbnRleHQuYXJ0aWZhY3RfcGF0aAogICAgb3MubWFrZWRpcnMoYmFzZV9wYXRoLCBleGlzdF9vaz1UcnVlKQoKICAgIGFyY2hpdmVfdXJsID0gYXJjaGl2ZV91cmwubG9jYWwoKQoKICAgIGlmIGRhdGFzZXQgaXMgbm90IE5vbmU6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwgZGF0YXNldCkKICAgICAgICBleGlzdHMgPSBvcy5wYXRoLmlzZGlyKGRlc3RfcGF0aCkKICAgIGVsc2U6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwga2V5ICsgZiIue2ZpbGVfZXh0fSIpCiAgICAgICAgZXhpc3RzID0gb3MucGF0aC5pc2ZpbGUoZGVzdF9wYXRoKQoKICAgIGlmIG5vdCBleGlzdHM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiZGVzdGluYXRpb24gZmlsZSBkb2VzIG5vdCBleGlzdCwgZG93bmxvYWRpbmciKQogICAgICAgIGlmIGNodW5rc2l6ZSA+IDA6CiAgICAgICAgICAgIGhlYWRlciA9IF9jaHVua19yZWFkd3JpdGUoYXJjaGl2ZV91cmwsIGRlc3RfcGF0aCwgY2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVuY29kaW5nLCBkdHlwZSwgZGF0YXNldCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXk9a2V5LCBzdGF0cz1zdGF0cywgZm9ybWF0PSdwYXJxdWV0JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YXJnZXRfcGF0aD1kZXN0X3BhdGgpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgZGYgPSBwZC5yZWFkX2NzdihhcmNoaXZlX3VybCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXksIGRmPWRmLCBmb3JtYXQ9ZmlsZV9leHQsIGluZGV4PWluZGV4KQogICAgZWxzZToKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKCJkZXN0aW5hdGlvbiBmaWxlIGFscmVhZHkgZXhpc3RzLCBub3RoaW5nIGRvbmUiKQ==
+ code_origin: ''
+ origin_filename: ''
description: retrieve remote archive, open and save as parquet
- default_handler: arc_to_parquet
disable_auto_mount: false
- clone_target_dir: ''
- env: []
- priority_class_name: ''
- preemption_mode: prevent
- affinity: null
- tolerations: null
- security_context: {}
-verbose: false
+ image: mlrun/mlrun
diff --git a/functions/master/arc_to_parquet/latest/src/item.yaml b/functions/master/arc_to_parquet/latest/src/item.yaml
index e08535f9..4bc2634c 100644
--- a/functions/master/arc_to_parquet/latest/src/item.yaml
+++ b/functions/master/arc_to_parquet/latest/src/item.yaml
@@ -1,6 +1,6 @@
apiVersion: v1
categories:
-- etl
+- utils
description: retrieve remote archive, open and save as parquet
doc: ''
example: arc_to_parquet.ipynb
@@ -11,7 +11,7 @@ labels:
author: avi
maintainers: []
marketplaceType: ''
-mlrunVersion: 1.4.1
+mlrunVersion: 1.7.0
name: arc-to-parquet
platformVersion: 3.5.4
spec:
@@ -21,4 +21,4 @@ spec:
kind: job
requirements: []
url: ''
-version: 1.4.1
+version: 1.5.0
diff --git a/functions/master/arc_to_parquet/latest/static/arc_to_parquet.html b/functions/master/arc_to_parquet/latest/static/arc_to_parquet.html
index 40fcaf4b..3598982d 100644
--- a/functions/master/arc_to_parquet/latest/static/arc_to_parquet.html
+++ b/functions/master/arc_to_parquet/latest/static/arc_to_parquet.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/arc_to_parquet/latest/static/documentation.html b/functions/master/arc_to_parquet/latest/static/documentation.html
index 31c44a7a..6f217a17 100644
--- a/functions/master/arc_to_parquet/latest/static/documentation.html
+++ b/functions/master/arc_to_parquet/latest/static/documentation.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/arc_to_parquet/latest/static/example.html b/functions/master/arc_to_parquet/latest/static/example.html
index d0a60d36..3f87a94c 100644
--- a/functions/master/arc_to_parquet/latest/static/example.html
+++ b/functions/master/arc_to_parquet/latest/static/example.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/arc_to_parquet/latest/static/function.html b/functions/master/arc_to_parquet/latest/static/function.html
index 690f9b29..998b172d 100644
--- a/functions/master/arc_to_parquet/latest/static/function.html
+++ b/functions/master/arc_to_parquet/latest/static/function.html
@@ -28,65 +28,26 @@
-kind: job
+verbose: false
metadata:
- name: arc-to-parquet
tag: ''
- hash: 959e5c3513bb7568402b6ce4023f4615e224b566
- project: ''
- labels:
- author: avi
+ name: arc-to-parquet
categories:
- - etl
+ - utils
+kind: job
spec:
command: ''
- args: []
- image: mlrun/mlrun
- build:
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgcHlhcnJvdy5wYXJxdWV0IGFzIHBxCmltcG9ydCBweWFycm93IGFzIHBhCmltcG9ydCBudW1weSBhcyBucAoKCmZyb20gbWxydW4uZXhlY3V0aW9uIGltcG9ydCBNTENsaWVudEN0eApmcm9tIG1scnVuLmRhdGFzdG9yZSBpbXBvcnQgRGF0YUl0ZW0KCmZyb20gdHlwaW5nIGltcG9ydCBMaXN0CmltcG9ydCBvcwoKCgpkZWYgX2NodW5rX3JlYWR3cml0ZSgKICAgICAgICBhcmNoaXZlX3VybCwKICAgICAgICBkZXN0X3BhdGgsCiAgICAgICAgY2h1bmtzaXplLAogICAgICAgIGhlYWRlciwKICAgICAgICBlbmNvZGluZywKICAgICAgICBkdHlwZSwKICAgICAgICBkYXRhc2V0Cik6CiAgICAiIiJzdHJlYW0gcmVhZCBhbmQgd3JpdGUgYXJjaGl2ZXMKCiAgICBwYW5kYXMgcmVhZHMgYW5kIHBhcnF1ZXQgd3JpdGVzCgogICAgbm90ZXMKICAgIC0tLS0tCiAgICAqIGRlc3RfcGF0aCBjYW4gYmUgZWl0aGVyIGEgZmlsZS5wYXJxdWV0LCBvciBpbiBodGUgY2FzZSBvZiBwYXJ0aXRpb25lZCBwYXJxdWV0CiAgICAgIGl0IHdpbGwgYmUgb25seSB0aGUgZGVzdGluYXRpb24gZm9sZGVyIG9mIHRoZSBwYXJxdWV0IHBhcnRpdGlvbiBmaWxlcwogICAgIiIiCiAgICBwcXdyaXRlciA9IE5vbmUKICAgIGhlYWRlciA9IFtdCiAgICBmb3IgaSwgZGYgaW4gZW51bWVyYXRlKHBkLnJlYWRfY3N2KGFyY2hpdmVfdXJsLCBjaHVua3NpemU9Y2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lcz1oZWFkZXIsIGVuY29kaW5nPWVuY29kaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1kdHlwZSkpOgogICAgICAgIHRhYmxlID0gcGEuVGFibGUuZnJvbV9wYW5kYXMoZGYpCiAgICAgICAgaWYgaSA9PSAwOgogICAgICAgICAgICBpZiBkYXRhc2V0OgogICAgICAgICAgICAgICAgaGVhZGVyID0gbnAuY29weSh0YWJsZS5zY2hlbWEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBwcXdyaXRlciA9IHBxLlBhcnF1ZXRXcml0ZXIoZGVzdF9wYXRoLCB0YWJsZS5zY2hlbWEpCiAgICAgICAgaWYgZGF0YXNldDoKICAgICAgICAgICAgcHEud3JpdGVfdG9fZGF0YXNldCh0YWJsZSwgcm9vdF9wYXRoPWRlc3RfcGF0aCwgcGFydGl0aW9uX2NvbHM9cGFydGl0aW9uX2NvbHMpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgcHF3cml0ZXIud3JpdGVfdGFibGUodGFibGUpCiAgICBpZiBwcXdyaXRlcjoKICAgICAgICBwcXdyaXRlci5jbG9zZSgpCgogICAgcmV0dXJuIGhlYWRlcgoKCmRlZiBhcmNfdG9fcGFycXVldCgKICAgICAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgICAgICBhcmNoaXZlX3VybDogRGF0YUl0ZW0sCiAgICAgICAgaGVhZGVyOiBMaXN0W3N0cl0gPSBbTm9uZV0sCiAgICAgICAgY2h1bmtzaXplOiBpbnQgPSAwLAogICAgICAgIGR0eXBlPU5vbmUsCiAgICAgICAgZW5jb2Rpbmc6IHN0ciA9ICJsYXRpbi0xIiwKICAgICAgICBrZXk6IHN0ciA9ICJkYXRhIiwKICAgICAgICBkYXRhc2V0OiBzdHIgPSAiTm9uZSIsCiAgICAgICAgcGFydF9jb2xzPVtdLAogICAgICAgIGZpbGVfZXh0OiBzdHIgPSAicGFycXVldCIsCiAgICAgICAgaW5kZXg6IGJvb2wgPSBGYWxzZSwKICAgICAgICByZWZyZXNoX2RhdGE6IGJvb2wgPSBGYWxzZSwKICAgICAgICBzdGF0czogYm9vbCA9IEZhbHNlCikgLT4gTm9uZToKICAgICIiIk9wZW4gYSBmaWxlL29iamVjdCBhcmNoaXZlIGFuZCBzYXZlIGFzIGEgcGFycXVldCBmaWxlIG9yIGRhdGFzZXQKCiAgICBOb3RlcwogICAgLS0tLS0KICAgICogdGhpcyBmdW5jdGlvbiBpcyB0eXBpY2FsbHkgZm9yIGxhcmdlIGZpbGVzLCBwbGVhc2UgYmUgc3VyZSB0byBjaGVjayBhbGwgc2V0dGluZ3MKICAgICogcGFydGl0aW9uaW5nIHJlcXVpcmVzIHByZWNpc2Ugc3BlY2lmaWNhdGlvbiBvZiBjb2x1bW4gdHlwZXMuCiAgICAqIHRoZSBhcmNoaXZlX3VybCBjYW4gYmUgYW55IGZpbGUgcmVhZGFibGUgYnkgcGFuZGFzIHJlYWRfY3N2LCB3aGljaCBpbmNsdWRlcyB0YXIgZmlsZXMKICAgICogaWYgdGhlIGBkYXRhc2V0YCBwYXJhbWV0ZXIgaXMgbm90IGVtcHR5LCB0aGVuIGEgcGFydGl0aW9uZWQgZGF0YXNldCB3aWxsIGJlIGNyZWF0ZWQKICAgIGluc3RlYWQgb2YgYSBzaW5nbGUgZmlsZSBpbiB0aGUgZm9sZGVyIGBkYXRhc2V0YAogICAgKiBpZiBhIGtleSBleGlzdHMgYWxyZWFkeSB0aGVuIGl0IHdpbGwgbm90IGJlIHJlLWFjcXVpcmVkIHVubGVzcyB0aGUgYHJlZnJlc2hfZGF0YWAgcGFyYW0KICAgIGlzIHNldCB0byBgVHJ1ZWAuICBUaGlzIGlzIGluIGNhc2UgdGhlIG9yaWdpbmFsIGZpbGUgaXMgY29ycnVwdCwgb3IgYSByZWZyZXNoIGlzCiAgICByZXF1aXJlZC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgIHRoZSBmdW5jdGlvbiBjb250ZXh0CiAgICA6cGFyYW0gYXJjaGl2ZV91cmw6ICAgIE1MUnVuIGRhdGEgaW5wdXQgKERhdGFJdGVtIG9iamVjdCkKICAgIDpwYXJhbSBjaHVua3NpemU6ICAgICAgKDApIHdoZW4gPiAwLCByb3cgc2l6ZSAoY2h1bmspIHRvIHJldHJpZXZlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHBlciBpdGVyYXRpb24KICAgIDpwYXJhbSBkdHlwZSAgICAgICAgICAgZGVzdGluYXRpb24gZGF0YSB0eXBlIG9mIHNwZWNpZmllZCBjb2x1bW5zCiAgICA6cGFyYW0gZW5jb2RpbmcgICAgICAgICgibGF0aW4tOCIpIGZpbGUgZW5jb2RpbmcKICAgIDpwYXJhbSBrZXk6ICAgICAgICAgICAga2V5IGluIGFydGlmYWN0IHN0b3JlICh3aGVuIGxvZ19kYXRhPVRydWUpCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgIChOb25lKSBpZiBub3QgTm9uZSB0aGVuICJ0YXJnZXRfcGF0aC9kYXRhc2V0IgogICAgICAgICAgICAgICAgICAgICAgICAgICBpcyBmb2xkZXIgZm9yIHBhcnRpdGlvbmVkIGZpbGVzCiAgICA6cGFyYW0gcGFydF9jb2xzOiAgICAgIChbXSkgbGlzdCBvZiBwYXJ0aXRpb25pbmcgY29sdW1ucwogICAgOnBhcmFtIGZpbGVfZXh0OiAgICAgICAocGFycXVldCkgY3N2L3BhcnF1ZXQgZmlsZSBleHRlbnNpb24KICAgIDpwYXJhbSBpbmRleDogICAgICAgICAgKEZhbHNlKSBwYW5kYXMgc2F2ZSBpbmRleCBvcHRpb24KICAgIDpwYXJhbSByZWZyZXNoX2RhdGE6ICAgKEZhbHNlKSBvdmVyd3JpdGUgZXhpc3RpbmcgZGF0YSBhdCB0aGF0IGxvY2F0aW9uCiAgICA6cGFyYW0gc3RhdHM6ICAgICAgICAgIChOb25lKSBjYWxjdWxhdGUgdGFibGUgc3RhdHMgd2hlbiBsb2dnaW5nIGFydGlmYWN0CiAgICAiIiIKICAgIGJhc2VfcGF0aCA9IGNvbnRleHQuYXJ0aWZhY3RfcGF0aAogICAgb3MubWFrZWRpcnMoYmFzZV9wYXRoLCBleGlzdF9vaz1UcnVlKQoKICAgIGFyY2hpdmVfdXJsID0gYXJjaGl2ZV91cmwubG9jYWwoKQoKICAgIGlmIGRhdGFzZXQgaXMgbm90IE5vbmU6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwgZGF0YXNldCkKICAgICAgICBleGlzdHMgPSBvcy5wYXRoLmlzZGlyKGRlc3RfcGF0aCkKICAgIGVsc2U6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwga2V5ICsgZiIue2ZpbGVfZXh0fSIpCiAgICAgICAgZXhpc3RzID0gb3MucGF0aC5pc2ZpbGUoZGVzdF9wYXRoKQoKICAgIGlmIG5vdCBleGlzdHM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiZGVzdGluYXRpb24gZmlsZSBkb2VzIG5vdCBleGlzdCwgZG93bmxvYWRpbmciKQogICAgICAgIGlmIGNodW5rc2l6ZSA+IDA6CiAgICAgICAgICAgIGhlYWRlciA9IF9jaHVua19yZWFkd3JpdGUoYXJjaGl2ZV91cmwsIGRlc3RfcGF0aCwgY2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVuY29kaW5nLCBkdHlwZSwgZGF0YXNldCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXk9a2V5LCBzdGF0cz1zdGF0cywgZm9ybWF0PSdwYXJxdWV0JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YXJnZXRfcGF0aD1kZXN0X3BhdGgpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgZGYgPSBwZC5yZWFkX2NzdihhcmNoaXZlX3VybCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXksIGRmPWRmLCBmb3JtYXQ9ZmlsZV9leHQsIGluZGV4PWluZGV4KQogICAgZWxzZToKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKCJkZXN0aW5hdGlvbiBmaWxlIGFscmVhZHkgZXhpc3RzLCBub3RoaW5nIGRvbmUiKQ==
- commands: []
- code_origin: http://github.com/aviaIguazio/functions.git#b32ae36ee9e5fb7a3b0affa8c15046aae9df7d24:/Users/Avi_Asulin/PycharmProjects/functions/arc_to_parquet/arc_to_parquet.py
- origin_filename: /Users/Avi_Asulin/PycharmProjects/functions/arc_to_parquet/arc_to_parquet.py
- requirements: []
+ default_handler: arc_to_parquet
entry_points:
arc_to_parquet:
- name: arc_to_parquet
- doc: 'Open a file/object archive and save as a parquet file or dataset
-
-
- Notes
-
- -----
-
- * this function is typically for large files, please be sure to check all
- settings
-
- * partitioning requires precise specification of column types.
-
- * the archive_url can be any file readable by pandas read_csv, which includes
- tar files
-
- * if the `dataset` parameter is not empty, then a partitioned dataset will
- be created
-
- instead of a single file in the folder `dataset`
-
- * if a key exists already then it will not be re-acquired unless the `refresh_data`
- param
-
- is set to `True`. This is in case the original file is corrupt, or a refresh
- is
-
- required.'
+ has_varargs: false
parameters:
- name: context
type: MLClientCtx
doc: the function context
- default: ''
- name: archive_url
type: DataItem
doc: MLRun data input (DataItem object)
- default: ''
- name: header
type: List[str]
default:
@@ -128,20 +89,45 @@
type: bool
doc: (None) calculate table stats when logging artifact
default: false
- outputs:
- - default: ''
lineno: 68
+ outputs:
+ - type: None
+ name: arc_to_parquet
+ has_kwargs: false
+ doc: 'Open a file/object archive and save as a parquet file or dataset
+
+
+ Notes
+
+ -----
+
+ * this function is typically for large files, please be sure to check all
+ settings
+
+ * partitioning requires precise specification of column types.
+
+ * the archive_url can be any file readable by pandas read_csv, which includes
+ tar files
+
+ * if the `dataset` parameter is not empty, then a partitioned dataset will
+ be created
+
+ instead of a single file in the folder `dataset`
+
+ * if a key exists already then it will not be re-acquired unless the `refresh_data`
+ param
+
+ is set to `True`. This is in case the original file is corrupt, or a refresh
+ is
+
+ required.'
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgcHlhcnJvdy5wYXJxdWV0IGFzIHBxCmltcG9ydCBweWFycm93IGFzIHBhCmltcG9ydCBudW1weSBhcyBucAoKCmZyb20gbWxydW4uZXhlY3V0aW9uIGltcG9ydCBNTENsaWVudEN0eApmcm9tIG1scnVuLmRhdGFzdG9yZSBpbXBvcnQgRGF0YUl0ZW0KCmZyb20gdHlwaW5nIGltcG9ydCBMaXN0CmltcG9ydCBvcwoKCgpkZWYgX2NodW5rX3JlYWR3cml0ZSgKICAgICAgICBhcmNoaXZlX3VybCwKICAgICAgICBkZXN0X3BhdGgsCiAgICAgICAgY2h1bmtzaXplLAogICAgICAgIGhlYWRlciwKICAgICAgICBlbmNvZGluZywKICAgICAgICBkdHlwZSwKICAgICAgICBkYXRhc2V0Cik6CiAgICAiIiJzdHJlYW0gcmVhZCBhbmQgd3JpdGUgYXJjaGl2ZXMKCiAgICBwYW5kYXMgcmVhZHMgYW5kIHBhcnF1ZXQgd3JpdGVzCgogICAgbm90ZXMKICAgIC0tLS0tCiAgICAqIGRlc3RfcGF0aCBjYW4gYmUgZWl0aGVyIGEgZmlsZS5wYXJxdWV0LCBvciBpbiBodGUgY2FzZSBvZiBwYXJ0aXRpb25lZCBwYXJxdWV0CiAgICAgIGl0IHdpbGwgYmUgb25seSB0aGUgZGVzdGluYXRpb24gZm9sZGVyIG9mIHRoZSBwYXJxdWV0IHBhcnRpdGlvbiBmaWxlcwogICAgIiIiCiAgICBwcXdyaXRlciA9IE5vbmUKICAgIGhlYWRlciA9IFtdCiAgICBmb3IgaSwgZGYgaW4gZW51bWVyYXRlKHBkLnJlYWRfY3N2KGFyY2hpdmVfdXJsLCBjaHVua3NpemU9Y2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBuYW1lcz1oZWFkZXIsIGVuY29kaW5nPWVuY29kaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1kdHlwZSkpOgogICAgICAgIHRhYmxlID0gcGEuVGFibGUuZnJvbV9wYW5kYXMoZGYpCiAgICAgICAgaWYgaSA9PSAwOgogICAgICAgICAgICBpZiBkYXRhc2V0OgogICAgICAgICAgICAgICAgaGVhZGVyID0gbnAuY29weSh0YWJsZS5zY2hlbWEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBwcXdyaXRlciA9IHBxLlBhcnF1ZXRXcml0ZXIoZGVzdF9wYXRoLCB0YWJsZS5zY2hlbWEpCiAgICAgICAgaWYgZGF0YXNldDoKICAgICAgICAgICAgcHEud3JpdGVfdG9fZGF0YXNldCh0YWJsZSwgcm9vdF9wYXRoPWRlc3RfcGF0aCwgcGFydGl0aW9uX2NvbHM9cGFydGl0aW9uX2NvbHMpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgcHF3cml0ZXIud3JpdGVfdGFibGUodGFibGUpCiAgICBpZiBwcXdyaXRlcjoKICAgICAgICBwcXdyaXRlci5jbG9zZSgpCgogICAgcmV0dXJuIGhlYWRlcgoKCmRlZiBhcmNfdG9fcGFycXVldCgKICAgICAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgICAgICBhcmNoaXZlX3VybDogRGF0YUl0ZW0sCiAgICAgICAgaGVhZGVyOiBMaXN0W3N0cl0gPSBbTm9uZV0sCiAgICAgICAgY2h1bmtzaXplOiBpbnQgPSAwLAogICAgICAgIGR0eXBlPU5vbmUsCiAgICAgICAgZW5jb2Rpbmc6IHN0ciA9ICJsYXRpbi0xIiwKICAgICAgICBrZXk6IHN0ciA9ICJkYXRhIiwKICAgICAgICBkYXRhc2V0OiBzdHIgPSAiTm9uZSIsCiAgICAgICAgcGFydF9jb2xzPVtdLAogICAgICAgIGZpbGVfZXh0OiBzdHIgPSAicGFycXVldCIsCiAgICAgICAgaW5kZXg6IGJvb2wgPSBGYWxzZSwKICAgICAgICByZWZyZXNoX2RhdGE6IGJvb2wgPSBGYWxzZSwKICAgICAgICBzdGF0czogYm9vbCA9IEZhbHNlCikgLT4gTm9uZToKICAgICIiIk9wZW4gYSBmaWxlL29iamVjdCBhcmNoaXZlIGFuZCBzYXZlIGFzIGEgcGFycXVldCBmaWxlIG9yIGRhdGFzZXQKCiAgICBOb3RlcwogICAgLS0tLS0KICAgICogdGhpcyBmdW5jdGlvbiBpcyB0eXBpY2FsbHkgZm9yIGxhcmdlIGZpbGVzLCBwbGVhc2UgYmUgc3VyZSB0byBjaGVjayBhbGwgc2V0dGluZ3MKICAgICogcGFydGl0aW9uaW5nIHJlcXVpcmVzIHByZWNpc2Ugc3BlY2lmaWNhdGlvbiBvZiBjb2x1bW4gdHlwZXMuCiAgICAqIHRoZSBhcmNoaXZlX3VybCBjYW4gYmUgYW55IGZpbGUgcmVhZGFibGUgYnkgcGFuZGFzIHJlYWRfY3N2LCB3aGljaCBpbmNsdWRlcyB0YXIgZmlsZXMKICAgICogaWYgdGhlIGBkYXRhc2V0YCBwYXJhbWV0ZXIgaXMgbm90IGVtcHR5LCB0aGVuIGEgcGFydGl0aW9uZWQgZGF0YXNldCB3aWxsIGJlIGNyZWF0ZWQKICAgIGluc3RlYWQgb2YgYSBzaW5nbGUgZmlsZSBpbiB0aGUgZm9sZGVyIGBkYXRhc2V0YAogICAgKiBpZiBhIGtleSBleGlzdHMgYWxyZWFkeSB0aGVuIGl0IHdpbGwgbm90IGJlIHJlLWFjcXVpcmVkIHVubGVzcyB0aGUgYHJlZnJlc2hfZGF0YWAgcGFyYW0KICAgIGlzIHNldCB0byBgVHJ1ZWAuICBUaGlzIGlzIGluIGNhc2UgdGhlIG9yaWdpbmFsIGZpbGUgaXMgY29ycnVwdCwgb3IgYSByZWZyZXNoIGlzCiAgICByZXF1aXJlZC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgIHRoZSBmdW5jdGlvbiBjb250ZXh0CiAgICA6cGFyYW0gYXJjaGl2ZV91cmw6ICAgIE1MUnVuIGRhdGEgaW5wdXQgKERhdGFJdGVtIG9iamVjdCkKICAgIDpwYXJhbSBjaHVua3NpemU6ICAgICAgKDApIHdoZW4gPiAwLCByb3cgc2l6ZSAoY2h1bmspIHRvIHJldHJpZXZlCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHBlciBpdGVyYXRpb24KICAgIDpwYXJhbSBkdHlwZSAgICAgICAgICAgZGVzdGluYXRpb24gZGF0YSB0eXBlIG9mIHNwZWNpZmllZCBjb2x1bW5zCiAgICA6cGFyYW0gZW5jb2RpbmcgICAgICAgICgibGF0aW4tOCIpIGZpbGUgZW5jb2RpbmcKICAgIDpwYXJhbSBrZXk6ICAgICAgICAgICAga2V5IGluIGFydGlmYWN0IHN0b3JlICh3aGVuIGxvZ19kYXRhPVRydWUpCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgIChOb25lKSBpZiBub3QgTm9uZSB0aGVuICJ0YXJnZXRfcGF0aC9kYXRhc2V0IgogICAgICAgICAgICAgICAgICAgICAgICAgICBpcyBmb2xkZXIgZm9yIHBhcnRpdGlvbmVkIGZpbGVzCiAgICA6cGFyYW0gcGFydF9jb2xzOiAgICAgIChbXSkgbGlzdCBvZiBwYXJ0aXRpb25pbmcgY29sdW1ucwogICAgOnBhcmFtIGZpbGVfZXh0OiAgICAgICAocGFycXVldCkgY3N2L3BhcnF1ZXQgZmlsZSBleHRlbnNpb24KICAgIDpwYXJhbSBpbmRleDogICAgICAgICAgKEZhbHNlKSBwYW5kYXMgc2F2ZSBpbmRleCBvcHRpb24KICAgIDpwYXJhbSByZWZyZXNoX2RhdGE6ICAgKEZhbHNlKSBvdmVyd3JpdGUgZXhpc3RpbmcgZGF0YSBhdCB0aGF0IGxvY2F0aW9uCiAgICA6cGFyYW0gc3RhdHM6ICAgICAgICAgIChOb25lKSBjYWxjdWxhdGUgdGFibGUgc3RhdHMgd2hlbiBsb2dnaW5nIGFydGlmYWN0CiAgICAiIiIKICAgIGJhc2VfcGF0aCA9IGNvbnRleHQuYXJ0aWZhY3RfcGF0aAogICAgb3MubWFrZWRpcnMoYmFzZV9wYXRoLCBleGlzdF9vaz1UcnVlKQoKICAgIGFyY2hpdmVfdXJsID0gYXJjaGl2ZV91cmwubG9jYWwoKQoKICAgIGlmIGRhdGFzZXQgaXMgbm90IE5vbmU6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwgZGF0YXNldCkKICAgICAgICBleGlzdHMgPSBvcy5wYXRoLmlzZGlyKGRlc3RfcGF0aCkKICAgIGVsc2U6CiAgICAgICAgZGVzdF9wYXRoID0gb3MucGF0aC5qb2luKGJhc2VfcGF0aCwga2V5ICsgZiIue2ZpbGVfZXh0fSIpCiAgICAgICAgZXhpc3RzID0gb3MucGF0aC5pc2ZpbGUoZGVzdF9wYXRoKQoKICAgIGlmIG5vdCBleGlzdHM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiZGVzdGluYXRpb24gZmlsZSBkb2VzIG5vdCBleGlzdCwgZG93bmxvYWRpbmciKQogICAgICAgIGlmIGNodW5rc2l6ZSA+IDA6CiAgICAgICAgICAgIGhlYWRlciA9IF9jaHVua19yZWFkd3JpdGUoYXJjaGl2ZV91cmwsIGRlc3RfcGF0aCwgY2h1bmtzaXplLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGVuY29kaW5nLCBkdHlwZSwgZGF0YXNldCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXk9a2V5LCBzdGF0cz1zdGF0cywgZm9ybWF0PSdwYXJxdWV0JywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YXJnZXRfcGF0aD1kZXN0X3BhdGgpCiAgICAgICAgZWxzZToKICAgICAgICAgICAgZGYgPSBwZC5yZWFkX2NzdihhcmNoaXZlX3VybCkKICAgICAgICAgICAgY29udGV4dC5sb2dfZGF0YXNldChrZXksIGRmPWRmLCBmb3JtYXQ9ZmlsZV9leHQsIGluZGV4PWluZGV4KQogICAgZWxzZToKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKCJkZXN0aW5hdGlvbiBmaWxlIGFscmVhZHkgZXhpc3RzLCBub3RoaW5nIGRvbmUiKQ==
+ code_origin: ''
+ origin_filename: ''
description: retrieve remote archive, open and save as parquet
- default_handler: arc_to_parquet
disable_auto_mount: false
- clone_target_dir: ''
- env: []
- priority_class_name: ''
- preemption_mode: prevent
- affinity: null
- tolerations: null
- security_context: {}
-verbose: false
+ image: mlrun/mlrun
diff --git a/functions/master/arc_to_parquet/latest/static/item.html b/functions/master/arc_to_parquet/latest/static/item.html
index 3d2efcf4..f5e22a54 100644
--- a/functions/master/arc_to_parquet/latest/static/item.html
+++ b/functions/master/arc_to_parquet/latest/static/item.html
@@ -30,7 +30,7 @@
apiVersion: v1
categories:
-- etl
+- utils
description: retrieve remote archive, open and save as parquet
doc: ''
example: arc_to_parquet.ipynb
@@ -41,7 +41,7 @@
author: avi
maintainers: []
marketplaceType: ''
-mlrunVersion: 1.4.1
+mlrunVersion: 1.7.0
name: arc-to-parquet
platformVersion: 3.5.4
spec:
@@ -51,7 +51,7 @@
kind: job
requirements: []
url: ''
-version: 1.4.1
+version: 1.5.0
diff --git a/functions/master/auto_trainer/1.7.0/static/auto_trainer.html b/functions/master/auto_trainer/1.7.0/static/auto_trainer.html
index cb1160d7..795a4a23 100644
--- a/functions/master/auto_trainer/1.7.0/static/auto_trainer.html
+++ b/functions/master/auto_trainer/1.7.0/static/auto_trainer.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/auto_trainer/1.7.0/static/documentation.html b/functions/master/auto_trainer/1.7.0/static/documentation.html
index 2e4a160d..b0bdf6b4 100644
--- a/functions/master/auto_trainer/1.7.0/static/documentation.html
+++ b/functions/master/auto_trainer/1.7.0/static/documentation.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/auto_trainer/1.7.0/static/example.html b/functions/master/auto_trainer/1.7.0/static/example.html
index 46a819e9..2c4fdabf 100644
--- a/functions/master/auto_trainer/1.7.0/static/example.html
+++ b/functions/master/auto_trainer/1.7.0/static/example.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/auto_trainer/latest/static/auto_trainer.html b/functions/master/auto_trainer/latest/static/auto_trainer.html
index cb1160d7..795a4a23 100644
--- a/functions/master/auto_trainer/latest/static/auto_trainer.html
+++ b/functions/master/auto_trainer/latest/static/auto_trainer.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/auto_trainer/latest/static/documentation.html b/functions/master/auto_trainer/latest/static/documentation.html
index 2e4a160d..b0bdf6b4 100644
--- a/functions/master/auto_trainer/latest/static/documentation.html
+++ b/functions/master/auto_trainer/latest/static/documentation.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/auto_trainer/latest/static/example.html b/functions/master/auto_trainer/latest/static/example.html
index 46a819e9..2c4fdabf 100644
--- a/functions/master/auto_trainer/latest/static/example.html
+++ b/functions/master/auto_trainer/latest/static/example.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/azureml_serving/1.1.0/src/function.yaml b/functions/master/azureml_serving/1.1.0/src/function.yaml
index c558e625..26229e70 100644
--- a/functions/master/azureml_serving/1.1.0/src/function.yaml
+++ b/functions/master/azureml_serving/1.1.0/src/function.yaml
@@ -48,4 +48,4 @@ spec:
secret_sources: []
affinity: null
tolerations: null
-verbose: false
+verbose: false
\ No newline at end of file
diff --git a/functions/master/azureml_serving/1.1.0/src/item.yaml b/functions/master/azureml_serving/1.1.0/src/item.yaml
index 84fadd55..d20e636b 100644
--- a/functions/master/azureml_serving/1.1.0/src/item.yaml
+++ b/functions/master/azureml_serving/1.1.0/src/item.yaml
@@ -24,4 +24,4 @@ spec:
requirements:
- azureml-automl-runtime~=1.38.1
url: ''
-version: 1.1.0
+version: 1.1.0
\ No newline at end of file
diff --git a/functions/master/azureml_serving/1.1.0/static/documentation.html b/functions/master/azureml_serving/1.1.0/static/documentation.html
index c5194e21..92c7c89d 100644
--- a/functions/master/azureml_serving/1.1.0/static/documentation.html
+++ b/functions/master/azureml_serving/1.1.0/static/documentation.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/azureml_serving/1.1.0/static/example.html b/functions/master/azureml_serving/1.1.0/static/example.html
index ebc576a1..52c450d9 100644
--- a/functions/master/azureml_serving/1.1.0/static/example.html
+++ b/functions/master/azureml_serving/1.1.0/static/example.html
@@ -20,7 +20,7 @@
-
+
diff --git a/functions/master/azureml_serving/1.1.0/static/function.html b/functions/master/azureml_serving/1.1.0/static/function.html
index a792e369..a2b3e82d 100644
--- a/functions/master/azureml_serving/1.1.0/static/function.html
+++ b/functions/master/azureml_serving/1.1.0/static/function.html
@@ -79,7 +79,6 @@
affinity: null
tolerations: null
verbose: false
-
diff --git a/functions/master/azureml_serving/1.1.0/static/item.html b/functions/master/azureml_serving/1.1.0/static/item.html
index 062811e0..6e8b05b3 100644
--- a/functions/master/azureml_serving/1.1.0/static/item.html
+++ b/functions/master/azureml_serving/1.1.0/static/item.html
@@ -55,7 +55,6 @@
- azureml-automl-runtime~=1.38.1
url: ''
version: 1.1.0
-