File tree Expand file tree Collapse file tree 2 files changed +2345
-1451
lines changed Expand file tree Collapse file tree 2 files changed +2345
-1451
lines changed Original file line number Diff line number Diff line change 356
356
\boldsymbol{\mathbf{\mu}}_j^{(t+1)} & = \frac{\sum_{i=1}^N r_{ij}^{(t)}\boldsymbol{\mathbf{Z}}_i}{\sum_{i=1}^N r_{ij}^{(t)}} \label{eq6} \\
357
357
\boldsymbol{\mathbf{\Sigma}}_j^{(t+1)} & = \frac{\sum_{i=1}^N r_{ij}^{(t)} \left(\boldsymbol{\mathbf{Z}}_i - \boldsymbol{\mathbf{\mu}}_j^{(t+1)} \right) \left(\boldsymbol{\mathbf{Z}}_i - \boldsymbol{\mathbf{\mu}}_j^{(t+1)} \right)^T}{\sum_{i=1}^N r_{ij}^{(t)}} \label{eq7} \\
358
358
\gamma_j^{(t+1)} & = \frac{\sum_{i=1}^N r_{ij}^{(t)}Y_i}{\sum_{i=1}^N r_{ij}^{(t)}} \label{eq8} \\
359
- \sigma_j^{2(t+1)} & = \frac{\sum_{i=1}^N r_{ij}^{(t)} \left(Y_i - \gamma_j^{(t+1)} \right)^2}{\sum_{i=1}^N r_{ij}^{(t)}} \label{eq9}
360
- \end{aligned} (\#eq:eq5)
359
+ \sigma_j^{2(t+1)} & = \frac{\sum_{i=1}^N r_{ij}^{(t)} \left(Y_i - \gamma_j^{(t+1)} \right)^2}{\sum_{i=1}^N r_{ij}^{(t)}}
360
+ \end{aligned}
361
+ \label{eq9} (\#eq:eq5)
361
362
$$
362
363
363
364
Although maximization of $\boldsymbol{\mathbf{\beta}}_ j^{(t+1)}$ in
@@ -705,7 +706,7 @@ cluster 2 features high levels of cg\_EPM2AIP1
705
706
features including cg\_ GRHL3 ($\mu_2 (\text{cg\_ GRHL3})= -0.363$). The
706
707
third table relates the exposures to the latent clusters. For instance,
707
708
` hs_hg_m_scaled ` represents the scaled level of maternal
708
- mercury exposure. The coefficient OR for ` hs_hg_m_scaled ` is
709
+ mercury exposure. The coefficient OR for ` hs_hg_m_scaled ` is
709
710
0.791, meaning that for each doubling of the scaled level of maternal
710
711
mercury exposure, the odds ratio of being assigned to latent cluster 2
711
712
is 2.205. Since latent cluster 2 is associated with a higher child level
You can’t perform that action at this time.
0 commit comments