|
1088 | 1088 | {
|
1089 | 1089 | "cell_type": "markdown",
|
1090 | 1090 | "source": [
|
1091 |
| - "## Run Inference with Fine-tuned RF-DETR Model" |
| 1091 | + "## Evaluate Fine-tuned RF-DETR Model" |
1092 | 1092 | ],
|
1093 | 1093 | "metadata": {
|
1094 |
| - "id": "xT1tPwZS_-6t" |
| 1094 | + "id": "X_9c113E39QP" |
1095 | 1095 | }
|
1096 | 1096 | },
|
1097 | 1097 | {
|
|
1213 | 1213 | "execution_count": null,
|
1214 | 1214 | "outputs": []
|
1215 | 1215 | },
|
| 1216 | + { |
| 1217 | + "cell_type": "code", |
| 1218 | + "source": [ |
| 1219 | + "import supervision as sv\n", |
| 1220 | + "from tqdm import tqdm\n", |
| 1221 | + "from supervision.metrics import MeanAveragePrecision\n", |
| 1222 | + "\n", |
| 1223 | + "targets = []\n", |
| 1224 | + "predictions = []\n", |
| 1225 | + "\n", |
| 1226 | + "for path, image, annotations in tqdm(ds):\n", |
| 1227 | + " image = Image.open(path)\n", |
| 1228 | + " detections = model.predict(image, threshold=0)\n", |
| 1229 | + "\n", |
| 1230 | + " targets.append(annotations)\n", |
| 1231 | + " predictions.append(detections)" |
| 1232 | + ], |
| 1233 | + "metadata": { |
| 1234 | + "colab": { |
| 1235 | + "base_uri": "https://localhost:8080/" |
| 1236 | + }, |
| 1237 | + "id": "szxs3PZsBVxa", |
| 1238 | + "outputId": "59c4660d-8e15-41a3-c842-a5b98bb022ea" |
| 1239 | + }, |
| 1240 | + "execution_count": null, |
| 1241 | + "outputs": [ |
| 1242 | + { |
| 1243 | + "output_type": "stream", |
| 1244 | + "name": "stderr", |
| 1245 | + "text": [ |
| 1246 | + "100%|██████████| 169/169 [00:03<00:00, 44.91it/s]\n" |
| 1247 | + ] |
| 1248 | + } |
| 1249 | + ] |
| 1250 | + }, |
| 1251 | + { |
| 1252 | + "cell_type": "code", |
| 1253 | + "source": [ |
| 1254 | + "map_metric = MeanAveragePrecision()\n", |
| 1255 | + "map_result = map_metric.update(predictions, targets).compute()\n", |
| 1256 | + "print(map_result)" |
| 1257 | + ], |
| 1258 | + "metadata": { |
| 1259 | + "colab": { |
| 1260 | + "base_uri": "https://localhost:8080/" |
| 1261 | + }, |
| 1262 | + "id": "fxqvXOQcsRF2", |
| 1263 | + "outputId": "df467d54-e4ad-4b40-b65f-46bb6cfc5ca7" |
| 1264 | + }, |
| 1265 | + "execution_count": null, |
| 1266 | + "outputs": [ |
| 1267 | + { |
| 1268 | + "output_type": "stream", |
| 1269 | + "name": "stdout", |
| 1270 | + "text": [ |
| 1271 | + "Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.568\n", |
| 1272 | + "Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.908\n", |
| 1273 | + "Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.580\n", |
| 1274 | + "Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.321\n", |
| 1275 | + "Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.758\n", |
| 1276 | + "Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.809\n" |
| 1277 | + ] |
| 1278 | + } |
| 1279 | + ] |
| 1280 | + }, |
| 1281 | + { |
| 1282 | + "cell_type": "markdown", |
| 1283 | + "source": [ |
| 1284 | + "## Run Inference with Fine-tuned RF-DETR Model" |
| 1285 | + ], |
| 1286 | + "metadata": { |
| 1287 | + "id": "xT1tPwZS_-6t" |
| 1288 | + } |
| 1289 | + }, |
1216 | 1290 | {
|
1217 | 1291 | "cell_type": "code",
|
1218 | 1292 | "source": [
|
|
1345 | 1419 | }
|
1346 | 1420 | ]
|
1347 | 1421 | },
|
1348 |
| - { |
1349 |
| - "cell_type": "markdown", |
1350 |
| - "source": [ |
1351 |
| - "## Evaluate Fine-tuned RF-DETR Model" |
1352 |
| - ], |
1353 |
| - "metadata": { |
1354 |
| - "id": "X_9c113E39QP" |
1355 |
| - } |
1356 |
| - }, |
1357 |
| - { |
1358 |
| - "cell_type": "code", |
1359 |
| - "source": [ |
1360 |
| - "import supervision as sv\n", |
1361 |
| - "from tqdm import tqdm\n", |
1362 |
| - "from supervision.metrics import MeanAveragePrecision\n", |
1363 |
| - "\n", |
1364 |
| - "targets = []\n", |
1365 |
| - "predictions = []\n", |
1366 |
| - "\n", |
1367 |
| - "for path, image, annotations in tqdm(ds):\n", |
1368 |
| - " image = Image.open(path)\n", |
1369 |
| - " detections = model.predict(image, threshold=0)\n", |
1370 |
| - "\n", |
1371 |
| - " targets.append(annotations)\n", |
1372 |
| - " predictions.append(detections)" |
1373 |
| - ], |
1374 |
| - "metadata": { |
1375 |
| - "colab": { |
1376 |
| - "base_uri": "https://localhost:8080/" |
1377 |
| - }, |
1378 |
| - "id": "szxs3PZsBVxa", |
1379 |
| - "outputId": "59c4660d-8e15-41a3-c842-a5b98bb022ea" |
1380 |
| - }, |
1381 |
| - "execution_count": null, |
1382 |
| - "outputs": [ |
1383 |
| - { |
1384 |
| - "output_type": "stream", |
1385 |
| - "name": "stderr", |
1386 |
| - "text": [ |
1387 |
| - "100%|██████████| 169/169 [00:03<00:00, 44.91it/s]\n" |
1388 |
| - ] |
1389 |
| - } |
1390 |
| - ] |
1391 |
| - }, |
1392 |
| - { |
1393 |
| - "cell_type": "code", |
1394 |
| - "source": [ |
1395 |
| - "map_metric = MeanAveragePrecision()\n", |
1396 |
| - "map_result = map_metric.update(predictions, targets).compute()\n", |
1397 |
| - "print(map_result)" |
1398 |
| - ], |
1399 |
| - "metadata": { |
1400 |
| - "colab": { |
1401 |
| - "base_uri": "https://localhost:8080/" |
1402 |
| - }, |
1403 |
| - "id": "fxqvXOQcsRF2", |
1404 |
| - "outputId": "df467d54-e4ad-4b40-b65f-46bb6cfc5ca7" |
1405 |
| - }, |
1406 |
| - "execution_count": null, |
1407 |
| - "outputs": [ |
1408 |
| - { |
1409 |
| - "output_type": "stream", |
1410 |
| - "name": "stdout", |
1411 |
| - "text": [ |
1412 |
| - "Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.568\n", |
1413 |
| - "Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.908\n", |
1414 |
| - "Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.580\n", |
1415 |
| - "Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.321\n", |
1416 |
| - "Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.758\n", |
1417 |
| - "Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.809\n" |
1418 |
| - ] |
1419 |
| - } |
1420 |
| - ] |
1421 |
| - }, |
1422 | 1422 | {
|
1423 | 1423 | "cell_type": "markdown",
|
1424 | 1424 | "source": [
|
|
0 commit comments