[help] Target statuses are different after transferring files #1476
-
Help
DescriptionI apologize if this isn't a targets specific question, but I figured it couldn't hurt to ask here. After a series of other answered help questions here, I got my targets pipeline to successfully run on my institution's Slurm cluster 🥳. After a small celebration I started the process of Here's the dependency network generated by graph LR
style Legend fill:#FFFFFF00,stroke:#000000;
style Graph fill:#FFFFFF00,stroke:#000000;
subgraph Legend
direction LR
xf1522833a4d242c5([""Up to date""]):::uptodate --- xd03d7c7dd2ddda2b([""Stem""]):::none
xd03d7c7dd2ddda2b([""Stem""]):::none --- x6f7e04ea3427f824[""Pattern""]:::none
end
subgraph Graph
direction LR
x83714660cbce9386(["model_data"]):::uptodate --> x4c2862de23e7fd96(["annual_vaccine_table"]):::uptodate
xa6072ae7a43caffa(["antigenic_distance_raw_data_file"]):::uptodate --> x0e4681951393f524(["antigenic_distance_raw_data"]):::uptodate
x2e8b0c0c9b08c7be(["model_metadata"]):::uptodate --> x29c21bee92c8aef2(["brms_model_file_names"]):::uptodate
x29c21bee92c8aef2(["brms_model_file_names"]):::uptodate --> x90e81719f83e0844["brms_model_fit_files"]:::uptodate
x47a4a6a335617863["brms_model_fits"]:::uptodate --> x90e81719f83e0844["brms_model_fit_files"]:::uptodate
x2e8b0c0c9b08c7be(["model_metadata"]):::uptodate --> x47a4a6a335617863["brms_model_fits"]:::uptodate
xfdbd654a1f2948e6(["prepped_cohort_data"]):::uptodate --> x210a25102d7d27e6(["civics_reporting_data"]):::uptodate
xfdbd654a1f2948e6(["prepped_cohort_data"]):::uptodate --> x4924950c1a58945c(["cleaned_cohort_data"]):::uptodate
x24daf91e66aafddf(["gap_sd_plot"]):::uptodate --> xb43eae5219050c3c(["combined_metrics_plot"]):::uptodate
x6e1636bf5a8795a9(["metrics_pc_plot"]):::uptodate --> xb43eae5219050c3c(["combined_metrics_plot"]):::uptodate
x698be06d7ad5f88a(["distinct_measurements"]):::uptodate --> x4223e83f6c8563f1(["counts_by_study_table"]):::uptodate
xa44bcdc18fc68732(["distinct_new_participants"]):::uptodate --> x4223e83f6c8563f1(["counts_by_study_table"]):::uptodate
xa72f89a62d09b7da(["distinct_personyears"]):::uptodate --> x4223e83f6c8563f1(["counts_by_study_table"]):::uptodate
x698be06d7ad5f88a(["distinct_measurements"]):::uptodate --> x0f9acf7151c5194a(["data_counts"]):::uptodate
xa44bcdc18fc68732(["distinct_new_participants"]):::uptodate --> x0f9acf7151c5194a(["data_counts"]):::uptodate
xa72f89a62d09b7da(["distinct_personyears"]):::uptodate --> x0f9acf7151c5194a(["data_counts"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> xddf50c9e7a4a0a7b(["demographics_table"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> x698be06d7ad5f88a(["distinct_measurements"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> xa44bcdc18fc68732(["distinct_new_participants"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> xa72f89a62d09b7da(["distinct_personyears"]):::uptodate
x645cc27bc82afdb8(["gap_sd_bootstraps"]):::uptodate --> x1a6e83f46fcebb0b(["gap_sd_bootstrap_file"]):::uptodate
x7bc9c97777d80aca(["normalized_icc_data"]):::uptodate --> x645cc27bc82afdb8(["gap_sd_bootstraps"]):::uptodate
x645cc27bc82afdb8(["gap_sd_bootstraps"]):::uptodate --> x24daf91e66aafddf(["gap_sd_plot"]):::uptodate
x46ae7b79bb331fe3(["normalized_correlation_data"]):::uptodate --> x0eb069b24b54e832(["icc_data"]):::uptodate
x0eb069b24b54e832(["icc_data"]):::uptodate --> xf8ede9d380dee3b2(["icc_data_nested"]):::uptodate
xf8ede9d380dee3b2(["icc_data_nested"]):::uptodate --> xfeb99c9ab8909745["icc_results_per_strain_type"]:::uptodate
xf8ede9d380dee3b2(["icc_data_nested"]):::uptodate --> x5303ef923ea08c5a(["icc_summary"]):::uptodate
xfeb99c9ab8909745["icc_results_per_strain_type"]:::uptodate --> x5303ef923ea08c5a(["icc_summary"]):::uptodate
x5303ef923ea08c5a(["icc_summary"]):::uptodate --> xb4a47366b8866ea7(["icc_summary_file"]):::uptodate
x5303ef923ea08c5a(["icc_summary"]):::uptodate --> xe800f59476a52fa9(["icc_summary_table"]):::uptodate
x0e4681951393f524(["antigenic_distance_raw_data"]):::uptodate --> xcfbad4104fe5c31f(["joined_data"]):::uptodate
x4924950c1a58945c(["cleaned_cohort_data"]):::uptodate --> xcfbad4104fe5c31f(["joined_data"]):::uptodate
x698be06d7ad5f88a(["distinct_measurements"]):::uptodate --> xfaa8ca0b7c12318d(["measurements_per_person_year"]):::uptodate
x7bc9c97777d80aca(["normalized_icc_data"]):::uptodate --> x6e1636bf5a8795a9(["metrics_pc_plot"]):::uptodate
xcfbad4104fe5c31f(["joined_data"]):::uptodate --> x83714660cbce9386(["model_data"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> x77841919662e7158(["model_data_files"]):::uptodate
x73d419b4476eac11(["model_fitting_seeds_file"]):::uptodate --> xccad9c3796b4eebc(["model_fitting_seeds"]):::uptodate
xccad9c3796b4eebc(["model_fitting_seeds"]):::uptodate --> x2e8b0c0c9b08c7be(["model_metadata"]):::uptodate
x33d7a8c39b877444(["nested_model_data"]):::uptodate --> x2e8b0c0c9b08c7be(["model_metadata"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> x33d7a8c39b877444(["nested_model_data"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> x46ae7b79bb331fe3(["normalized_correlation_data"]):::uptodate
x0eb069b24b54e832(["icc_data"]):::uptodate --> x7bc9c97777d80aca(["normalized_icc_data"]):::uptodate
xc9bc30827a59d139(["UGAFluVac_raw_data"]):::uptodate --> xfdbd654a1f2948e6(["prepped_cohort_data"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> xdd3ac2d8aae8b204(["strain_names_table"]):::uptodate
x83714660cbce9386(["model_data"]):::uptodate --> x041afc9f57e7881c(["strain_panel_table"]):::uptodate
x4e3a18b7b03e484b(["UGAFluVac_raw_data_file"]):::uptodate --> xc9bc30827a59d139(["UGAFluVac_raw_data"]):::uptodate
x46ae7b79bb331fe3(["normalized_correlation_data"]):::uptodate --> x0bf166d166c2d12b(["vaccine_normalized_correlation_pairplot"]):::uptodate
end
classDef uptodate stroke:#000000,color:#ffffff,fill:#354823;
classDef none stroke:#000000,color:#000000,fill:#94a4ac;
linkStyle 0 stroke-width:0px;
linkStyle 1 stroke-width:0px;
And here's the dependency network in my local directory after graph LR
style Legend fill:#FFFFFF00,stroke:#000000;
style Graph fill:#FFFFFF00,stroke:#000000;
subgraph Legend
direction LR
x2db1ec7a48f65a9b([""Outdated""]):::outdated --- xd03d7c7dd2ddda2b([""Stem""]):::none
xd03d7c7dd2ddda2b([""Stem""]):::none --- x6f7e04ea3427f824[""Pattern""]:::none
end
subgraph Graph
direction LR
x83714660cbce9386(["model_data"]):::outdated --> x4c2862de23e7fd96(["annual_vaccine_table"]):::outdated
xa6072ae7a43caffa(["antigenic_distance_raw_data_file"]):::outdated --> x0e4681951393f524(["antigenic_distance_raw_data"]):::outdated
x2e8b0c0c9b08c7be(["model_metadata"]):::outdated --> x29c21bee92c8aef2(["brms_model_file_names"]):::outdated
x29c21bee92c8aef2(["brms_model_file_names"]):::outdated --> x90e81719f83e0844["brms_model_fit_files"]:::outdated
x47a4a6a335617863["brms_model_fits"]:::outdated --> x90e81719f83e0844["brms_model_fit_files"]:::outdated
x2e8b0c0c9b08c7be(["model_metadata"]):::outdated --> x47a4a6a335617863["brms_model_fits"]:::outdated
xfdbd654a1f2948e6(["prepped_cohort_data"]):::outdated --> x210a25102d7d27e6(["civics_reporting_data"]):::outdated
xfdbd654a1f2948e6(["prepped_cohort_data"]):::outdated --> x4924950c1a58945c(["cleaned_cohort_data"]):::outdated
x24daf91e66aafddf(["gap_sd_plot"]):::outdated --> xb43eae5219050c3c(["combined_metrics_plot"]):::outdated
x6e1636bf5a8795a9(["metrics_pc_plot"]):::outdated --> xb43eae5219050c3c(["combined_metrics_plot"]):::outdated
x698be06d7ad5f88a(["distinct_measurements"]):::outdated --> x4223e83f6c8563f1(["counts_by_study_table"]):::outdated
xa44bcdc18fc68732(["distinct_new_participants"]):::outdated --> x4223e83f6c8563f1(["counts_by_study_table"]):::outdated
xa72f89a62d09b7da(["distinct_personyears"]):::outdated --> x4223e83f6c8563f1(["counts_by_study_table"]):::outdated
x698be06d7ad5f88a(["distinct_measurements"]):::outdated --> x0f9acf7151c5194a(["data_counts"]):::outdated
xa44bcdc18fc68732(["distinct_new_participants"]):::outdated --> x0f9acf7151c5194a(["data_counts"]):::outdated
xa72f89a62d09b7da(["distinct_personyears"]):::outdated --> x0f9acf7151c5194a(["data_counts"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> xddf50c9e7a4a0a7b(["demographics_table"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> x698be06d7ad5f88a(["distinct_measurements"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> xa44bcdc18fc68732(["distinct_new_participants"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> xa72f89a62d09b7da(["distinct_personyears"]):::outdated
x645cc27bc82afdb8(["gap_sd_bootstraps"]):::outdated --> x1a6e83f46fcebb0b(["gap_sd_bootstrap_file"]):::outdated
x7bc9c97777d80aca(["normalized_icc_data"]):::outdated --> x645cc27bc82afdb8(["gap_sd_bootstraps"]):::outdated
x645cc27bc82afdb8(["gap_sd_bootstraps"]):::outdated --> x24daf91e66aafddf(["gap_sd_plot"]):::outdated
x46ae7b79bb331fe3(["normalized_correlation_data"]):::outdated --> x0eb069b24b54e832(["icc_data"]):::outdated
x0eb069b24b54e832(["icc_data"]):::outdated --> xf8ede9d380dee3b2(["icc_data_nested"]):::outdated
xf8ede9d380dee3b2(["icc_data_nested"]):::outdated --> xfeb99c9ab8909745["icc_results_per_strain_type"]:::outdated
xf8ede9d380dee3b2(["icc_data_nested"]):::outdated --> x5303ef923ea08c5a(["icc_summary"]):::outdated
xfeb99c9ab8909745["icc_results_per_strain_type"]:::outdated --> x5303ef923ea08c5a(["icc_summary"]):::outdated
x5303ef923ea08c5a(["icc_summary"]):::outdated --> xb4a47366b8866ea7(["icc_summary_file"]):::outdated
x5303ef923ea08c5a(["icc_summary"]):::outdated --> xe800f59476a52fa9(["icc_summary_table"]):::outdated
x0e4681951393f524(["antigenic_distance_raw_data"]):::outdated --> xcfbad4104fe5c31f(["joined_data"]):::outdated
x4924950c1a58945c(["cleaned_cohort_data"]):::outdated --> xcfbad4104fe5c31f(["joined_data"]):::outdated
x698be06d7ad5f88a(["distinct_measurements"]):::outdated --> xfaa8ca0b7c12318d(["measurements_per_person_year"]):::outdated
x7bc9c97777d80aca(["normalized_icc_data"]):::outdated --> x6e1636bf5a8795a9(["metrics_pc_plot"]):::outdated
xcfbad4104fe5c31f(["joined_data"]):::outdated --> x83714660cbce9386(["model_data"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> x77841919662e7158(["model_data_files"]):::outdated
x73d419b4476eac11(["model_fitting_seeds_file"]):::outdated --> xccad9c3796b4eebc(["model_fitting_seeds"]):::outdated
xccad9c3796b4eebc(["model_fitting_seeds"]):::outdated --> x2e8b0c0c9b08c7be(["model_metadata"]):::outdated
x33d7a8c39b877444(["nested_model_data"]):::outdated --> x2e8b0c0c9b08c7be(["model_metadata"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> x33d7a8c39b877444(["nested_model_data"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> x46ae7b79bb331fe3(["normalized_correlation_data"]):::outdated
x0eb069b24b54e832(["icc_data"]):::outdated --> x7bc9c97777d80aca(["normalized_icc_data"]):::outdated
xc9bc30827a59d139(["UGAFluVac_raw_data"]):::outdated --> xfdbd654a1f2948e6(["prepped_cohort_data"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> xdd3ac2d8aae8b204(["strain_names_table"]):::outdated
x83714660cbce9386(["model_data"]):::outdated --> x041afc9f57e7881c(["strain_panel_table"]):::outdated
x4e3a18b7b03e484b(["UGAFluVac_raw_data_file"]):::outdated --> xc9bc30827a59d139(["UGAFluVac_raw_data"]):::outdated
x46ae7b79bb331fe3(["normalized_correlation_data"]):::outdated --> x0bf166d166c2d12b(["vaccine_normalized_correlation_pairplot"]):::outdated
end
classDef outdated stroke:#000000,color:#000000,fill:#78B7C5;
classDef none stroke:#000000,color:#000000,fill:#94a4ac;
linkStyle 0 stroke-width:0px;
linkStyle 1 stroke-width:0px;
That is...exactly the same, but all my targets are outdated! So my question is how do I make sure the targets status is the same between the cluster and my local machine? I ask because I've run the computationally expensive part on the cluster, and now I have some relatively fast post-processing I need to do, which would be easier to run on my local machine. If there is no way to do this, I can run everything on the cluster but I wanted to asked because it's a bit faster if I can do quick steps on my local machine without rerunning the expensive parts that I need to do on the cluster. I thought that Thanks in advance (again)! |
Beta Was this translation helpful? Give feedback.
Replies: 1 comment 7 replies
-
Transferring from Windows to Linux might be an issue because locales etc. can cause subtle discrepancies. You also might have different versions of R and/or packages. An |
Beta Was this translation helpful? Give feedback.
I agree, that could be the reason. Looking back at your screenshot from #1476 (reply in thread), it looks like
tar_sitrep()
reportedfile = TRUE
for a few targets, which indicates files somehow changed when you downloaded the project from Unix to Windows. You can confirm that the hash changed usingsecretbase::siphash13(file = "...")
on a file and comparing output between platforms. As you say, that would point to an issue outsidetargets
(preserving file contents en route to Windows).