Transform LiteLLM database data into CloudZero AnyCost CBF format for cost tracking and analysis.
- Extract usage data from LiteLLM PostgreSQL or SQLite database
- Transform data into CloudZero Billing Format (CBF)
- Cost comparison analysis between SpendLogs and user tables (v0.4.0+)
- Dual data source support with
--source
option: transaction-level SpendLogs or daily aggregated user tables - SQLite support for testing and offline analysis (v0.6.1+)
- Analysis mode with beautiful terminal output using Rich
- Multiple output options: CSV files or direct CloudZero API streaming
- Built with modern Python tools: uv, ruff, pytest, polars, httpx
# Install with uv (recommended)
uv add ll2cz
# Or install with pip
pip install ll2cz
git clone https://github.com/Cloudzero/cloudzero-litellm-toolkit.git
cd cloudzero-litellm-toolkit
uv sync
ll2cz supports configuration files to avoid repeating common settings. You can store your database connection, CloudZero API credentials, and other settings in ~/.ll2cz/config.yml
.
# Create an example configuration file
ll2cz config example
# Check current configuration status
ll2cz config status
This creates ~/.ll2cz/config.yml
with the following structure:
database_url: postgresql://user:password@host:5432/litellm_db
cz_api_key: your-cloudzero-api-key
cz_connection_id: your-connection-id
CLI arguments always take priority over configuration file values:
- CLI arguments (highest priority)
- Configuration file (
~/.ll2cz/config.yml
) - Default values (lowest priority)
# Show version
ll2cz --version
# Show help
ll2cz --help
# Configuration management
ll2cz config example # Create example config file
ll2cz config status # Show current config status
ll2cz config edit # Interactively edit configuration
Transform LiteLLM data to CloudZero CBF format:
# Display data on screen (formatted table) - PostgreSQL
ll2cz transform --input "postgresql://user:pass@host:5432/litellm_db" --screen
# Display data on screen - SQLite
ll2cz transform --input "sqlite://path/to/litellm.sqlite" --screen
# Export to CSV file
ll2cz transform --input "postgresql://user:pass@host:5432/litellm_db" --output data.csv
# Limit records for screen display
ll2cz transform --screen --limit 25
Send data directly to CloudZero AnyCost API:
# Send today's data
ll2cz transmit day
# Send specific day's data (DD-MM-YYYY format)
ll2cz transmit day 15-01-2024
# Send current month's data
ll2cz transmit month
# Send specific month's data (MM-YYYY format)
ll2cz transmit month 01-2024
# Send all available data (batched by day)
ll2cz transmit all
# Test mode - show payloads without sending (5 records only)
ll2cz transmit day --test
# Use append mode (sum operation instead of replace_hourly)
ll2cz transmit day --append
# Specify timezone for date handling
ll2cz transmit day --timezone "US/Eastern"
# Limit number of records to process
ll2cz transmit month --limit 1000
Analyze your LiteLLM database data:
# General data analysis
ll2cz analyze data --limit 10000
# Show raw table data
ll2cz analyze data --show-raw --table all
# Show specific table only
ll2cz analyze data --show-raw --table user
# CZRN (CloudZero Resource Name) analysis
ll2cz analyze czrn --limit 10000
# Spend analysis
ll2cz analyze spend --limit 10000
# Database schema analysis
ll2cz analyze schema --output schema_docs.md
# Refresh cache from server (use cache commands)
ll2cz cache refresh
# Save analysis to JSON
ll2cz analyze data --json analysis.json
Manage local data cache for offline operation:
# Check cache status (local only)
ll2cz cache status
# Check cache status with remote server verification
ll2cz cache status --remote-check
# Clear local cache
ll2cz cache clear
# Force refresh cache from server
ll2cz cache refresh
The tool transforms LiteLLM usage logs into CloudZero's CBF format with the following mappings:
spend
→cost
total_tokens
→usage_quantity
model
,user_id
,call_type
→dimensions
metadata
fields → additionaldimensions
- Duration calculated from
startTime
andendTime
This project follows modern Python best practices:
- Python 3.12 - Latest Python version
- uv - Fast Python package manager
- Polars - High-performance DataFrames (instead of pandas)
- httpx - Modern HTTP client (instead of requests)
- Rich - Beautiful terminal output and formatting
- Typer - Modern CLI framework with rich help formatting
- PyYAML - YAML configuration file support
- Pathlib - Modern filesystem path operations
- pytest - Testing framework
- ruff - Fast Python linter and formatter
# Setup development environment
uv sync --dev
# Run tests
uv run pytest
# Run linting
uv run ruff check src/ tests/
# Fix linting issues
uv run ruff check --fix src/ tests/
# Build package
uv build
For testing and development, you can use SQLite instead of PostgreSQL:
# Create a test SQLite database with sample data
python scripts/create_test_sqlite.py
# Use the test database
ll2cz transmit all --test --input "sqlite://test.sqlite"
The test database includes:
- Sample organizations, teams, and users
- API keys with realistic naming
- 30 days of usage data
- Multiple model providers (OpenAI, Anthropic, etc.)
- Python ≥ 3.12
- PostgreSQL or SQLite database with LiteLLM data
- CloudZero API key and connection ID (for streaming mode)
Apache 2.0 - see LICENSE file for details.