This project is part of a data visualization task that involves using Python to create either a bar chart or a histogram to represent the distribution of a variable (categorical or continuous).
- Visualize the distribution of categorical or continuous data using bar charts or histograms.
- Example variables:
- Gender (categorical) β use bar chart.
- Age (continuous) β use histogram.
gender_bar_chart.ipynb
: A Jupyter Notebook to visualize gender distribution using a bar chart.age_histogram.ipynb
: A Jupyter Notebook to visualize age distribution using a histogram.README.md
: Project description and instructions.
- Open any
.ipynb
file via Google Colab. - Run the code cells to see the visualizations.
- Clone the repository:
git clone https://github.com/your-username/Data-Visualization-Task.git cd Data-Visualization-Task
- Open the notebook in Jupyter:
jupyter notebook gender_bar_chart.ipynb
- Python
- pandas
- matplotlib
A vertical bar chart showing count of each gender in the dataset.
A histogram showing frequency distribution of ages divided into bins.
For any questions or suggestions, feel free to reach out!