[π§π· PortuguΓͺs] [πΊπΈ English]
A repository for research, implementation, and best practices with Gradient Boosting methods (GBM, XGBoost, LightGBM), H2O AutoML, and robust strategies for modeling extreme class imbalance ("Low Default") in data science for finance and risk.
Course: Humanistic AI & Data Science (4th Semester)
Institution: PUC-SP
Professor: β¨ Rooney Ribeiro Albuquerque Coelho
Tip
This repository 2-social-buzz-ai-GBoost-and-LowDefault-Modeling is part of the main project 1-social-buzz-ai-main. To explore all related materials, analyses, and notebooks, visit the main repository
- 1-social-buzz-ai-main Part of the Humanistic AI Research & Data Modeling Series β where data meets human insight.
Important
-
Projects and deliverables may be made publicly available whenever possible.
-
The course prioritizes hands-on practice with real data in consulting scenarios.
-
All activities comply with the academic and ethical guidelines of PUC-SP.
-
Confidential information from this repository remains private in private repositories.
Tip
1-NLP_PreProcessing_Regex.mov
Β Β
2-NLP_PreProcessing_Tokenizer.using.NLTK.mov
3-NLP_PreProcessing_.Lemma.mov
4-NLP_PreProcessing_Radicalisation.mov
5-NLP_PreProcessing_Count.Vectorizer.Bag-of-Words._.ConvertsTex_.into_Featur_.CountMatrix.mov
6-NLP_PreProcessing_Stopword.Removal.Remove.Common.Words.Stopwords.1.mov
πΈΰΉ My Contacts Hub
ββββββββββββββ βΉπΰΉ ββββββββββββββ
β£β’β€ Back to Top
Copyright 2025 Mindful-AI-Assistants. Code released under the MIT license.