Skip to content

[eig_circulant] Update translations #46

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 5 additions & 9 deletions lectures/eig_circulant.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def construct_cirlulant(row):
```

```{code-cell} ipython3
# 一个简单的例子,当 N = 3
# 当 N = 3 时的一个简单例子
construct_cirlulant(np.array([1., 2., 3.]))
```

Expand Down Expand Up @@ -317,7 +317,7 @@ Q8 = F8 / np.sqrt(8)
```

```{code-cell} ipython3
# 验证正交性(酉性)
# 验证正交性
Q8 @ np.conjugate(Q8)
```

Expand All @@ -338,20 +338,16 @@ for j in range(8):
diff_arr
```

## 关联置换矩阵
## 循环矩阵与置换矩阵的关系

接下来,我们执行计算来验证方程 {eq}`eqn:circulant` 中定义的循环矩阵 $C$ 可以写成
接下来,我们将验证方程 {eq}`eqn:circulant` 中定义的循环矩阵 $C$ 可以表示为置换矩阵的线性组合:

$$
C = c_{0} I + c_{1} P + \cdots + c_{n-1} P^{n-1}
$$

并且 $P$ 的每个特征向量也是 $C$ 的特征向量。

```{code-cell} ipython3

```

我们用 $N=8$ 的情况来说明这一点。

```{code-cell} ipython3
Expand All @@ -366,7 +362,7 @@ c
C8 = construct_cirlulant(c)
```

计算 $c_{0} I + c_{1} P + \cdots + c_{n-1} P^{n-1}$
计算 $c_{0} I + c_{1} P + \cdots + c_{n-1} P^{n-1}$

```{code-cell} ipython3
N = 8
Expand Down
Loading