Skip to content

Typo, Missing packages and files #56

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
"id": "-eODEP6nPA96"
},
"source": [
"K-means clustering is a simple and popular type of unsupervised machine learning algorithm, which is used on unlabeled data. The goal of this algorithm is tofind groups in the data, with the number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one of K groups according to provided features similarity.The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum of squared criterion:\n",
"K-means clustering is a simple and popular type of unsupervised machine learning algorithm, which is used on unlabeled data. The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one of K groups according to provided features similarity.The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum of squared criterion:\n",
"\n",
"$$\n",
"\\sum_{i=0}^{n}\\min_{\\mu_j \\in C}(||x_j - \\mu_i||^2)\n",
Expand Down Expand Up @@ -471,7 +471,7 @@
}
],
"source": [
"home_data = pd.read_csv('./housing.csv', usecols = ['longitude', 'latitude', 'median_house_value'])\n",
"home_data = pd.read_csv('./housing.csv.zip', usecols = ['longitude', 'latitude', 'median_house_value'])\n",
"home_data.head()"
]
},
Expand Down Expand Up @@ -580,8 +580,8 @@
"source": [
"X_train, X_test, y_train, y_test = train_test_split(home_data[['latitude', 'longitude']], home_data[['median_house_value']], test_size=0.33, random_state=0)\n",
"\n",
"X_train_norm = preprocessing.normalize(X_train)\n",
"X_test_norm = preprocessing.normalize(X_test)"
"X_train_norm = normalize(X_train)\n",
"X_test_norm = normalize(X_test)"
]
},
{
Expand Down Expand Up @@ -1784,7 +1784,7 @@
"output_type": "stream",
"text": [
"<ipython-input-171-3f6784df37dd>:1: DtypeWarning: Columns (25,108) have mixed types. Specify dtype option on import or set low_memory=False.\n",
" players = pd.read_csv(\"players_22.csv\")\n"
" players = pd.read_csv(\"players_22.csv.zip\")\n"
]
},
{
Expand Down Expand Up @@ -2237,7 +2237,7 @@
}
],
"source": [
"players = pd.read_csv(\"players_22.csv\")\n",
"players = pd.read_csv(\"players_22.csv.zip\")\n",
"players.head()"
]
},
Expand Down Expand Up @@ -4810,7 +4810,8 @@
"outputs": [],
"source": [
"from sklearn.metrics import pairwise_distances_argmin\n",
"import matplotlib.animation as animation"
"import matplotlib.animation as animation\n",
"from IPython.display import Image"
]
},
{
Expand Down
201 changes: 201 additions & 0 deletions Jupyter_Notebooks/Chapter_02_Unsupervised_Learning/Mall_Customers.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
CustomerID,Genre,Age,Annual Income (k$),Spending Score (1-100)
0001,Male,19,15,39
0002,Male,21,15,81
0003,Female,20,16,6
0004,Female,23,16,77
0005,Female,31,17,40
0006,Female,22,17,76
0007,Female,35,18,6
0008,Female,23,18,94
0009,Male,64,19,3
0010,Female,30,19,72
0011,Male,67,19,14
0012,Female,35,19,99
0013,Female,58,20,15
0014,Female,24,20,77
0015,Male,37,20,13
0016,Male,22,20,79
0017,Female,35,21,35
0018,Male,20,21,66
0019,Male,52,23,29
0020,Female,35,23,98
0021,Male,35,24,35
0022,Male,25,24,73
0023,Female,46,25,5
0024,Male,31,25,73
0025,Female,54,28,14
0026,Male,29,28,82
0027,Female,45,28,32
0028,Male,35,28,61
0029,Female,40,29,31
0030,Female,23,29,87
0031,Male,60,30,4
0032,Female,21,30,73
0033,Male,53,33,4
0034,Male,18,33,92
0035,Female,49,33,14
0036,Female,21,33,81
0037,Female,42,34,17
0038,Female,30,34,73
0039,Female,36,37,26
0040,Female,20,37,75
0041,Female,65,38,35
0042,Male,24,38,92
0043,Male,48,39,36
0044,Female,31,39,61
0045,Female,49,39,28
0046,Female,24,39,65
0047,Female,50,40,55
0048,Female,27,40,47
0049,Female,29,40,42
0050,Female,31,40,42
0051,Female,49,42,52
0052,Male,33,42,60
0053,Female,31,43,54
0054,Male,59,43,60
0055,Female,50,43,45
0056,Male,47,43,41
0057,Female,51,44,50
0058,Male,69,44,46
0059,Female,27,46,51
0060,Male,53,46,46
0061,Male,70,46,56
0062,Male,19,46,55
0063,Female,67,47,52
0064,Female,54,47,59
0065,Male,63,48,51
0066,Male,18,48,59
0067,Female,43,48,50
0068,Female,68,48,48
0069,Male,19,48,59
0070,Female,32,48,47
0071,Male,70,49,55
0072,Female,47,49,42
0073,Female,60,50,49
0074,Female,60,50,56
0075,Male,59,54,47
0076,Male,26,54,54
0077,Female,45,54,53
0078,Male,40,54,48
0079,Female,23,54,52
0080,Female,49,54,42
0081,Male,57,54,51
0082,Male,38,54,55
0083,Male,67,54,41
0084,Female,46,54,44
0085,Female,21,54,57
0086,Male,48,54,46
0087,Female,55,57,58
0088,Female,22,57,55
0089,Female,34,58,60
0090,Female,50,58,46
0091,Female,68,59,55
0092,Male,18,59,41
0093,Male,48,60,49
0094,Female,40,60,40
0095,Female,32,60,42
0096,Male,24,60,52
0097,Female,47,60,47
0098,Female,27,60,50
0099,Male,48,61,42
0100,Male,20,61,49
0101,Female,23,62,41
0102,Female,49,62,48
0103,Male,67,62,59
0104,Male,26,62,55
0105,Male,49,62,56
0106,Female,21,62,42
0107,Female,66,63,50
0108,Male,54,63,46
0109,Male,68,63,43
0110,Male,66,63,48
0111,Male,65,63,52
0112,Female,19,63,54
0113,Female,38,64,42
0114,Male,19,64,46
0115,Female,18,65,48
0116,Female,19,65,50
0117,Female,63,65,43
0118,Female,49,65,59
0119,Female,51,67,43
0120,Female,50,67,57
0121,Male,27,67,56
0122,Female,38,67,40
0123,Female,40,69,58
0124,Male,39,69,91
0125,Female,23,70,29
0126,Female,31,70,77
0127,Male,43,71,35
0128,Male,40,71,95
0129,Male,59,71,11
0130,Male,38,71,75
0131,Male,47,71,9
0132,Male,39,71,75
0133,Female,25,72,34
0134,Female,31,72,71
0135,Male,20,73,5
0136,Female,29,73,88
0137,Female,44,73,7
0138,Male,32,73,73
0139,Male,19,74,10
0140,Female,35,74,72
0141,Female,57,75,5
0142,Male,32,75,93
0143,Female,28,76,40
0144,Female,32,76,87
0145,Male,25,77,12
0146,Male,28,77,97
0147,Male,48,77,36
0148,Female,32,77,74
0149,Female,34,78,22
0150,Male,34,78,90
0151,Male,43,78,17
0152,Male,39,78,88
0153,Female,44,78,20
0154,Female,38,78,76
0155,Female,47,78,16
0156,Female,27,78,89
0157,Male,37,78,1
0158,Female,30,78,78
0159,Male,34,78,1
0160,Female,30,78,73
0161,Female,56,79,35
0162,Female,29,79,83
0163,Male,19,81,5
0164,Female,31,81,93
0165,Male,50,85,26
0166,Female,36,85,75
0167,Male,42,86,20
0168,Female,33,86,95
0169,Female,36,87,27
0170,Male,32,87,63
0171,Male,40,87,13
0172,Male,28,87,75
0173,Male,36,87,10
0174,Male,36,87,92
0175,Female,52,88,13
0176,Female,30,88,86
0177,Male,58,88,15
0178,Male,27,88,69
0179,Male,59,93,14
0180,Male,35,93,90
0181,Female,37,97,32
0182,Female,32,97,86
0183,Male,46,98,15
0184,Female,29,98,88
0185,Female,41,99,39
0186,Male,30,99,97
0187,Female,54,101,24
0188,Male,28,101,68
0189,Female,41,103,17
0190,Female,36,103,85
0191,Female,34,103,23
0192,Female,32,103,69
0193,Male,33,113,8
0194,Female,38,113,91
0195,Female,47,120,16
0196,Female,35,120,79
0197,Female,45,126,28
0198,Male,32,126,74
0199,Male,32,137,18
0200,Male,30,137,83
Binary file not shown.
Binary file not shown.