Skip to content

VeronicaTollenaar/BlueIceAreas

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview of scripts:

BIA_map_vis_and_analyze.py - visualizes map and analyzes continent-wide mapping (e.g., Figures 1, 2, and S8, S9, S11, S12, S13)

BIA_map_vis_radar.py - visualizes uncertainties of BIA predictions related to the inclusion of radar data (Figure S7)

BIA_map_vis_uncertainties.py - visualizes uncertainties of BIA predictions (Figure 3)

check_checkpoint.py - checks training results (e.g., learning curve)

check_num_params.py - checks number of parameters of model

continentwide_predictions.py - generates continent-wide predictions, plots Figure S5

DataPreparation.py - generates data tiles for training, validation, testing, and for continent-wide predictions

dataset.py - reads in data in dataloader and applies different data augmentations

download_data.py - function to download data from MODIS (based on https://www.moonbooks.org/Articles/How-to-download-a-file-from-NASA-LAADS-DAAC-using-python-/)

explore_handlabels_MOAgrainsize.py - compares handlabels to MOA grainsize data (Figure S10)

merge_daily_passes.py - merges daily composites of MODIS into a multi-day composite

merge_ensemble_predictions.py - merges 40 BIA maps into a single BIA map

model.py - defines CNN model, script based on U-Net implementaion on https://github.com/aladdinpersson/Machine-Learning-Collection

parameter_settings_final_model_1.json - example of parameter settings file to train the CNN

perform_rand_search.py - runs random search for hyper parameter optimizing and compares results

Performance_ValTestTiles.py - estimates performance in validation and test squares

plot_MODISnewcomposite.py - generates Figure S1 to visualize new MODIS composite

plot_overview_data.py - plots overview of input data (Figure S6)

plot_overview_tiling.py - plots overview of datasplit (training, validation, and testing; Figure S2)

python_wrapper_functions.py - defines different functions to reproject and process MODIS data

python_wrapper_main.py - python wrapper to download and reproject MODIS data automatically

QA_tomask.py - processes quality bands of MODIS to mask out e.g., cloudy observations

train.py - trains CNN, script based on U-Net implementaion on https://github.com/aladdinpersson/Machine-Learning-Collection utils.py - different functions used for training CNN

vis_existing_vs_new.py - visualizes existing labels vs BIA outlines generated in this study and handlabels (Figures S3 and S4)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages