Skip to content

[ add ] product structure on RawSetoid #2720

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 8 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,9 @@ New modules

* `Data.List.Relation.Binary.Suffix.Propositional.Properties` showing the equivalence to right divisibility induced by the list monoid.

* `Data.Sign.Show` to show a sign
* `Data.Sign.Show` to show a sign.

* `Relation.Binary.Morphism.Construct.Product` to plumb in the (categorical) product structure on `RawSetoid`.

Additions to existing modules
-----------------------------
Expand Down
81 changes: 81 additions & 0 deletions src/Relation/Binary/Morphism/Construct/Product.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
------------------------------------------------------------------------
-- The Agda standard library
--
-- The projection morphisms for relational structures arising from the
-- non-dependent product construction
------------------------------------------------------------------------

{-# OPTIONS --safe --cubical-compatible #-}

module Relation.Binary.Morphism.Construct.Product where

import Data.Product.Base as Product using (<_,_>; proj₁; proj₂)
open import Data.Product.Relation.Binary.Pointwise.NonDependent as Pointwise
using (Pointwise)
open import Level using (Level)
open import Relation.Binary.Bundles.Raw using (RawSetoid)
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Morphism.Structures using (IsRelHomomorphism)

private
variable
a b c ℓ₁ ℓ₂ ℓ : Level
A : Set a
B : Set b
C : Set c


------------------------------------------------------------------------
-- definitions

module _ (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) where

private

_≈_ = Pointwise _≈₁_ _≈₂_

module Proj₁ where

isRelHomomorphism : IsRelHomomorphism _≈_ _≈₁_ Product.proj₁
isRelHomomorphism = record { cong = Product.proj₁ }


module Proj₂ where

isRelHomomorphism : IsRelHomomorphism _≈_ _≈₂_ Product.proj₂
isRelHomomorphism = record { cong = Product.proj₂ }


module Pair (_≈′_ : Rel C ℓ) where

isRelHomomorphism : ∀ {h k} →
IsRelHomomorphism _≈′_ _≈₁_ h →
IsRelHomomorphism _≈′_ _≈₂_ k →
IsRelHomomorphism _≈′_ _≈_ Product.< h , k >
isRelHomomorphism H K = record { cong = Product.< H.cong , K.cong > }
where
module H = IsRelHomomorphism H
module K = IsRelHomomorphism K


------------------------------------------------------------------------
-- package up for export

module _ {M : RawSetoid a ℓ₁} {N : RawSetoid b ℓ₂} where

private

module M = RawSetoid M
module N = RawSetoid N

proj₁ = Proj₁.isRelHomomorphism M._≈_ N._≈_
proj₂ = Proj₂.isRelHomomorphism M._≈_ N._≈_

module _ {P : RawSetoid c ℓ} where

private

module P = RawSetoid P

<_,_> = Pair.isRelHomomorphism M._≈_ N._≈_ P._≈_