A quick beginner-friendly guide to PyTorch basics: tensors, math operations, reshaping, NumPy interoperability, random seeds, and GPU usage.
- Scalars / Vectors / Matrices / Tensors β
torch.tensor()
- Create tensors β
torch.rand()
,torch.zeros()
,torch.ones()
,torch.arange()
- Data types & devices β
.type()
,requires_grad=True
,.to(device)
- Math operations β
+
,-
,*
,/
,torch.matmul()
- Matrix operations β
.mm()
,.T
,.reshape()
,.view()
,torch.stack()
- Dimension operations β
.squeeze()
,.unsqueeze()
,.permute()
- NumPy β PyTorch β
torch.from_numpy()
,.numpy()
- Random seeds β
torch.manual_seed()
- GPU / CUDA β
.cuda()
,torch.cuda.is_available()
,.cpu()
pip install torch torchvision torchaudio
For feedback or questions, contact: [email protected]