Skip to content

deluair/Financial-Supply-Chain-Risk-Platform

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

1 Commit
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Financial Supply Chain Risk Platform

A comprehensive platform for assessing and visualizing financial supply chain risks, providing real-time analytics and risk mitigation strategies for trade finance, cross-border payments, and currency volatility.

๐ŸŒŸ Features

Core Risk Assessment

  • Trade Finance Gap Analysis: SME rejection rates, instrument distribution, regional growth disparities
  • Cross-Border Payment Risk: Cybersecurity vulnerabilities, payment network analysis, stablecoin adoption
  • Currency Volatility Management: Exchange rate fluctuations, hedging effectiveness, CBDC impact assessment

Advanced Analytics

  • Systemic Risk Calculation: Correlation-adjusted risk scoring across all components
  • Regional Risk Analysis: Geographic concentration and growth rate disparities
  • Network Vulnerability Assessment: Payment system security and resilience metrics
  • Concentration Risk Analysis: Herfindahl-Hirschman Index for instrument distribution

Interactive Dashboard

  • Real-time Risk Monitoring: Live risk gauges and component breakdowns
  • Historical Trend Analysis: Time series visualization of risk metrics over time
  • Correlation Heatmaps: Visual representation of risk component interdependencies
  • Customizable Time Ranges: 7-90 day historical analysis with interactive controls

API Integration

  • RESTful API: FastAPI-based endpoints for risk assessment
  • Real-time Data Generation: Realistic simulation data for testing and demonstration
  • JSON Export: Risk reports and metrics in structured JSON format

๐Ÿ—๏ธ Architecture

Financial Supply Chain Risk Platform/
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ models/           # Core risk models
โ”‚   โ”‚   โ”œโ”€โ”€ base.py       # Base model class
โ”‚   โ”‚   โ”œโ”€โ”€ trade_finance.py
โ”‚   โ”‚   โ”œโ”€โ”€ cross_border_payment.py
โ”‚   โ”‚   โ””โ”€โ”€ currency_volatility.py
โ”‚   โ”œโ”€โ”€ data/             # Data generation and processing
โ”‚   โ”‚   โ””โ”€โ”€ simulation_generator.py
โ”‚   โ”œโ”€โ”€ risk/             # Risk assessment engine
โ”‚   โ”‚   โ””โ”€โ”€ risk_assessor.py
โ”‚   โ”œโ”€โ”€ visualization/    # Dashboard and visualizations
โ”‚   โ”‚   โ”œโ”€โ”€ risk_visualizer.py
โ”‚   โ”‚   โ””โ”€โ”€ dashboard.py
โ”‚   โ””โ”€โ”€ api/              # API endpoints
โ”‚       โ””โ”€โ”€ main.py
โ”œโ”€โ”€ requirements.txt      # Python dependencies
โ””โ”€โ”€ README.md

๐Ÿš€ Installation

Prerequisites

  • Python 3.8 or higher
  • pip package manager

Setup Instructions

  1. Clone the repository

    git clone https://github.com/deluair/Financial-Supply-Chain-Risk-Platform.git
    cd Financial-Supply-Chain-Risk-Platform
  2. Create a virtual environment (recommended)

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  3. Install dependencies

    pip install -r requirements.txt

๐Ÿ“Š Usage

Interactive Dashboard

Launch the interactive dashboard for real-time risk visualization:

python -m src.visualization.dashboard

Navigate to http://localhost:8050 in your browser to access:

  • Risk overview with gauges and component breakdowns
  • Historical trend analysis with customizable time ranges
  • Correlation heatmaps showing risk interdependencies
  • Interactive controls for data refresh and time range selection

API Server

Start the FastAPI server for programmatic access:

python -m src.api.main

Access the API documentation at http://localhost:8000/docs

Example API Usage

Generate Risk Assessment:

curl -X POST "http://localhost:8000/assess-risk" \
     -H "Content-Type: application/json" \
     -d '{
       "trade_finance": {...},
       "cross_border": {...},
       "currency": {...}
     }'

Generate Simulation Data:

curl -X POST "http://localhost:8000/generate-data?num_records=100"

Programmatic Usage

from src.risk.risk_assessor import RiskAssessor
from src.data.simulation_generator import SimulationDataGenerator
from src.models.trade_finance import TradeFinanceGap

# Initialize components
risk_assessor = RiskAssessor()
data_generator = SimulationDataGenerator()

# Generate simulation data
trade_data, payment_data, currency_data = data_generator.generate_all_data(num_records=1)

# Create model instances
trade_finance = TradeFinanceGap(**trade_data[0])
# ... create other models

# Generate risk report
risk_report = risk_assessor.generate_risk_report(
    trade_finance=trade_finance,
    cross_border=cross_border,
    currency=currency
)

print(f"Total Risk Score: {risk_report['risk_scores']['total_risk_score']}")
print(f"Risk Level: {risk_report['risk_level']}")

๐Ÿ“ˆ Risk Metrics

Trade Finance Metrics

  • Gap-to-Market Ratio: Proportion of unmet financing demand
  • SME Impact Score: Effect on small and medium enterprises
  • Open Account Ratio: Adoption of modern trade finance instruments
  • Regional Risk: Geographic concentration using coefficient of variation
  • Concentration Risk: Instrument distribution using Herfindahl-Hirschman Index

Cross-Border Payment Metrics

  • Stablecoin Penetration: Digital currency adoption rates
  • Real-time Payment Ratio: Modern payment system usage
  • Network Vulnerability: Security assessment across payment networks
  • Technology Adoption Risk: Digital transformation readiness

Currency Volatility Metrics

  • Average/Maximum Volatility: Historical exchange rate fluctuations
  • Exposure Risk: Unhedged currency positions
  • Hedging Effectiveness: Risk mitigation through financial instruments
  • CBDC Impact: Central Bank Digital Currency effects

๐ŸŽฏ Risk Assessment Framework

Systemic Risk Calculation

The platform uses a weighted scoring system with correlation adjustments:

Systemic Risk = (Trade Finance Risk ร— 0.3 + 
                Payment Risk ร— 0.3 + 
                Currency Risk ร— 0.4) ร— (1 + Correlation Adjustment)

Risk Thresholds

  • Critical: 80-100 (Immediate action required)
  • High: 60-79 (Significant mitigation needed)
  • Medium: 30-59 (Monitor and plan mitigation)
  • Low: 0-29 (Acceptable risk level)

Correlation Factors

  • Trade Finance โ†” Cross-Border: 0.4
  • Trade Finance โ†” Currency: 0.3
  • Cross-Border โ†” Currency: 0.5

๐Ÿ› ๏ธ Development

Project Structure

  • Models: Core business logic and data structures
  • Risk Assessment: Advanced risk calculation algorithms
  • Visualization: Interactive dashboards and charts
  • API: RESTful endpoints for integration
  • Data: Realistic simulation data generation

Key Dependencies

  • NumPy/Pandas: Data processing and numerical computations
  • SciPy: Statistical analysis and risk calculations
  • Plotly/Dash: Interactive visualizations and dashboard
  • FastAPI: High-performance API framework
  • TensorFlow: Machine learning capabilities (future enhancements)

Testing

pytest tests/

Code Quality

black src/
isort src/
mypy src/

๐Ÿ”ฎ Future Enhancements

  • Machine Learning Integration: Predictive risk modeling using TensorFlow
  • Real-time Data Feeds: Integration with live financial data sources
  • Advanced Visualization: 3D risk landscapes and network graphs
  • Mobile Dashboard: Responsive design for mobile devices
  • Multi-currency Support: Expanded currency risk analysis
  • Regulatory Compliance: Built-in compliance checking and reporting

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿค Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

๐Ÿ“ž Support

For questions, issues, or contributions, please:

  • Open an issue on GitHub
  • Contact the development team
  • Review the documentation and examples

๐Ÿ† Acknowledgments

  • Financial risk assessment methodologies based on industry best practices
  • Visualization framework inspired by modern financial dashboards
  • Data simulation techniques following realistic market distributions

Built with โค๏ธ for the financial technology community

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages