Skip to content

fhswf/DGS-PG-Gruppe-1

Repository files navigation

Sign Language Pose Estimation Project

This repository contains a comprehensive solution for whole-body pose estimation specifically designed for German Sign Language (DGS) analysis and annotation.

🎯 Project Overview

This project provides automated pose estimation tools for sign language research and annotation, featuring:

  • 133-keypoint whole-body pose detection using RTMLib
  • Automated ML backend for Label Studio integration
  • Production-ready Kubernetes deployment
  • Docker-based development environment

🏗️ Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   RTMLib        │    │   ML Backend    │    │  Label Studio   │
│ Pose Estimator  │◄──►│    (Flask)      │◄──►│   Annotation    │
│                 │    │                 │    │   Interface     │
└─────────────────┘    └─────────────────┘    └─────────────────┘

📁 Repository Structure

  • pose-estimator/ - Core RTMLib pose estimation implementation
  • ml-backend/ - Label Studio ML backend with Docker setup
  • k8s/ - Kubernetes deployment manifests
  • notebooks/ - Jupyter notebooks for development and testing
  • data/ - Sample data and test videos
  • output/ - Generated pose estimation results

🚀 Quick Start

1. Pose Estimation (Standalone)

cd pose-estimator
pip install -r requirements.txt
python quick_start_demo.py

2. ML Backend Development

cd ml-backend
docker compose up -d

3. Production Deployment

./deploy.sh

📚 Documentation

Core Components

Development Resources

🔧 Technology Stack

  • Pose Estimation: RTMLib (ONNX Runtime)
  • ML Backend: Python Flask, Label Studio ML SDK
  • Containerization: Docker, Docker Compose
  • Orchestration: Kubernetes, Kustomize
  • CI/CD: GitHub Actions
  • Monitoring: Prometheus, Grafana

🎥 Pose Estimation Features

Supported Keypoints (133 total)

  • Body: 17 keypoints (COCO format)
  • Face: 68 keypoints (detailed facial landmarks)
  • Hands: 42 keypoints (21 per hand)
  • Feet: 6 keypoints (3 per foot)

Detection Modes

  • Performance: High accuracy, slower inference
  • Balanced: Good accuracy-speed trade-off
  • Lightweight: Fast inference, lower accuracy

Access URLs:

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

👥 Team

FH Südwestfalen - DGS Project Group 1


For detailed setup and deployment instructions, see the ML Backend Documentation.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

 
 
 

Contributors 5