This repository contains a comprehensive solution for whole-body pose estimation specifically designed for German Sign Language (DGS) analysis and annotation.
This project provides automated pose estimation tools for sign language research and annotation, featuring:
- 133-keypoint whole-body pose detection using RTMLib
- Automated ML backend for Label Studio integration
- Production-ready Kubernetes deployment
- Docker-based development environment
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ RTMLib │ │ ML Backend │ │ Label Studio │
│ Pose Estimator │◄──►│ (Flask) │◄──►│ Annotation │
│ │ │ │ │ Interface │
└─────────────────┘ └─────────────────┘ └─────────────────┘
pose-estimator/- Core RTMLib pose estimation implementationml-backend/- Label Studio ML backend with Docker setupk8s/- Kubernetes deployment manifestsnotebooks/- Jupyter notebooks for development and testingdata/- Sample data and test videosoutput/- Generated pose estimation results
cd pose-estimator
pip install -r requirements.txt
python quick_start_demo.pycd ml-backend
docker compose up -d./deploy.sh- ML Backend Setup & Deployment - Complete guide for building and deploying the ML backend
- Pose Estimator Documentation - RTMLib implementation details
- Kubernetes Deployment Guide - Production deployment instructions
- Docker Development Setup - Local development environment
- Label Studio Configuration - ML backend integration guide
- API Documentation - REST API reference
- Pose Estimation: RTMLib (ONNX Runtime)
- ML Backend: Python Flask, Label Studio ML SDK
- Containerization: Docker, Docker Compose
- Orchestration: Kubernetes, Kustomize
- CI/CD: GitHub Actions
- Monitoring: Prometheus, Grafana
- Body: 17 keypoints (COCO format)
- Face: 68 keypoints (detailed facial landmarks)
- Hands: 42 keypoints (21 per hand)
- Feet: 6 keypoints (3 per foot)
- Performance: High accuracy, slower inference
- Balanced: Good accuracy-speed trade-off
- Lightweight: Fast inference, lower accuracy
Access URLs:
- LabelStudio: https://label-studio.fh-swf.cloud
- ML-Backend: https://rtmlib.fh-swf.cloud
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
FH Südwestfalen - DGS Project Group 1
For detailed setup and deployment instructions, see the ML Backend Documentation.