To download the pipeline_smFISH : git clone https://github.com/fish-quant/pipeline_HOX_apiFISH.git
1) Base environment:
a) conda create --name base_env_apifish python=3.11
b) conda activate base_env_apifish
c) pip install -r requirements_base_env_apifish.txt
d) add the kernel to jupyter :
python -m ipykernel install --user --name base_env_apifish --display-name "base_env_apifish"
2) Create second environment (ufish_env):
a) conda activate base
b) conda create --name ufish_env python=3.11
c) conda install pip
d) pip install -r requirements_ufish.txt
e) add new kernel to your conda environment:
python -m ipykernel install --user --name ufish_env --display-name "ufish_env"
3) Test if cuda is available otherwise install it.
python -c "import torch;
print('CUDA available:', torch.cuda.is_available()); print('CUDA version:', torch.version.cuda)"
1) In Linux/Mac, open a terminal. In Windows open the Anaconda Prompt. Place the terminal's current working directory
at the pipelines root "../pipeline_HOX_apiFISH".
2) Place yourself in the conda environment:
conda activate base_env_apifish
3) Launch the jupyter server:
jupyter notebook.
4 ) Execute the pipeline in the order given by the diagram.
5) All jupyter notebooks should be run in the environment "base_env_apifish", except the notebook called Spot_detection_part1.
Jacques Bourg @ Florian Muller lab. Institut Pasteur. 04/06/25