Skip to content

horizon-research/SnapPix

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 SnapPix

Official Code for 📄 DAC'25 Paper: SnapPix: Efficient-Coding–Inspired In-Sensor Compression for Edge Vision 📚 Paper Link


📂 Dataset

🔗 Source

We use OpenMMLab Datasets for all dataset used.📦

⚙️ Data Preprocessing

Apply downsampling, inverse gamma correction, and grayscale conversion to dataset, here is an example for SSV2:

python preprocess_data.py ../../OpenDataLab___sthv2/raw/sthv2/sthv2/videos/ ssv2_processed/ --input_format .webm

See dataset/preprocessing.sh for more examples.

Process csv of SSV2:

# for finetuning dataset
python3 dataset/ssv2_list_process.py input.csv output.csv
# for pretraining dataset
python3 dataset/ssv2_list_process.py input.csv output.csv --pretrained

🧹 Generate K710 (Pretrain Dataset)

Combining preprocessed K400 / K600 / K700 / SSV2 into one dataset:

python3 combine_pretrained.py dataset_lists/K710/train.csv dataset_lists/SSV2/train.csv \
mmdataset/k400_processed mmdataset/k600_processed mmdataset/k700_processed mmdataset/ssv2_processed combined_pretrain

Copy K400 / K600 / K700 to K710:

bash dataset/copy_k710.sh

🛠️ Environment Setup

Refer to the VideoMAEv2 README for detailed environment installation instructions ✅


🧪 Decorrelated Pattern Training

Train using the decorrelation strategy:

python3 VideoMAEv2/run_decorrelation_training.py

🔍 A pretrained version is available at:
VideoMAEv2/decorrelation_training_wd0_norm_new


🏋️️ Pretraining Scripts

Located in:
VideoMAEv2/scripts/pretrain_and_reconstruct

Examples:

📌 Key Parameters:

  • OUTPUT_DIR: Path to logs and checkpoints 📁
  • DATA_PATH: CSV list of data files 📄
  • --data_root: Dataset root (e.g., /local_scratch/26477563/mmdataset/) 🗂️

🎯 Finetuning Scripts

Found in scripts/finetune/

Examples:

🔧 Key Parameters:

  • OUTPUT_DIR: Log/checkpoint directory
  • DATA_PATH: Dataset list path
  • MODEL_PATH: Path to pretrained model
  • --data_root: Dataset directory

📊 Evaluation Scripts

Evaluate on different datasets using:

  • 📼 scripts/K400_precise_val/Kinetics-400
  • 🎮 scripts/SSV2_precise_val/Something-Something V2
  • 📹 scripts/UCF_precise_val/UCF-101

🙏 Acknowledgements

A big thank you to:

  • 🧠 VideoMAEv2 authors (Wang et al., CVPR 2023)
    🔗 VideoMAEv2 GitHub

  • 🎥 Action Recognition from a Single Coded Image
    📄 IEEE Paper

We greatly appreciate the open-source / code-sharing contributions that made SnapPix possible 💡

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published