Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 41 additions & 0 deletions src/setfit/data.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
import math
import random
from typing import TYPE_CHECKING, Dict, List, Tuple

import pandas as pd
Expand Down Expand Up @@ -280,3 +282,42 @@ def collate_fn(batch):
labels = torch.Tensor(labels).long()

return features, labels


class NoDuplicateClassesDataLoader:
def __init__(self, train_examples, batch_size):
self.batch_size = batch_size
self.collate_fn = None
self.train_examples = train_examples

# TODO: add assert batch_size <= num_classes

def __iter__(self):
label_class_dict = {}
random.shuffle(self.train_examples)
for example in self.train_examples:
example_label_list = label_class_dict.get(example.label, [])
example_label_list.append(example)
label_class_dict[example.label] = example_label_list

for _ in range(self.__len__()):
batch = []
classes_in_batch = set()

while len(batch) < self.batch_size:
class_to_add = random.choice(label_class_dict.keys())
if class_to_add not in classes_in_batch:
example = label_class_dict[class_to_add].pop(0)
batch.append(example)

# list of examples for this class is empty and needs to be refilled
if len(label_class_dict[class_to_add]) == 0:
random.shuffle(self.train_examples)
for example in self.train_examples:
if example.label == class_to_add:
label_class_dict[class_to_add].append(example)

yield self.collate_fn(batch) if self.collate_fn is not None else batch

def __len__(self):
return math.floor(len(self.train_examples) / self.batch_size)