High-throughput Integrated Tagging for cell MAPping (HIT-MAP) is an efficient end-to-end pipeline for massively parallel endogenous protein tagging, coupled to accelerated multi-modal acquisition of protein spatial imaging and biophysical interaction data.
- Free software: MIT license
- Documentation: https://hit-map.readthedocs.io
- Source code: https://github.com/idekerlab/hit_map
Install deconwolf (https://elgw.github.io/deconwolf/), which is written in C.
Follow the official installation instructions on their website. This can be installed in either CPU or GPU.
This repository requires the following Python packages:
cellmaps_utils cellmaps-image-embedding cellmaps-ppi-embedding cellmaps-coembedding cellmaps-generate-hierarchy cellmaps-hierarchyeval os shutil time subprocess cv2 multipagetiff numpy pandas
Create a file named requirements.txt
with the above list, then install via:
pip install -r requirements.txt
Additionally,
A Dockerfile is provided to build a reproducible environment. It can be found in docker/Dockerfile
in this repo.
Clone repo and build the docker image:
git clone [email protected]:idekerlab/hit_map.git cd hit_map docker build -f docker/Dockerfile -t hitmap:latest .
Run:
docker run --rm -it \ -v "$(pwd)":/work -w /work \ hitmap:latest \ python3 -m hit_map.hit_mapcmd \ --image_meta /work/tests/image_meta.tsv \ --ppi_dir /work/tests/PPI_folder \ --microscope_setup_param /work/tests/microscope_setup_param.npy \ --psigma 2.0 \ --provenance_img /work/hit_map/provenance_files/provenance_image.json \ --provenance_ppi /work/hit_map/provenance_files/provenance_ppi.json \ --outdir /work/mydir
For MacBooks with ARM processors, add --platform linux/amd64
when building the image and running the command:
docker buildx build --platform linux/amd64 -f docker/Dockerfile -t hitmap:latest . docker run --platform linux/amd64 --rm -it ...
Input includes wide-field images and AP-MS PPI files.
Organize images into a folder with four subfolders:
image_folder/ ├── blue # nucleus ├── green # protein of interest ├── red # mitochondria └── yellow # ER
An image_meta.tsv
file is required with the following fields:
file_directory
: path to image directorychannel
: mapping of channels (blue: nucleus, green: targeted protein, red: microtubule, yellow: ER)targeted_proteins
: protein(s) of interestsave_prefix
: prefix for saved files
A microscope_setup_param.npy
file is required with a dictionary containing:
ni
: refractive index (float)NA
: numerical aperture (float)lambda
: wavelength dictionary{blue:int, red:int, green:int, yellow:int}
resxy
: pixel size (int)resz
: distance between panels (int)threads
: multiprocessing threads (int)
A PPI_folder
containing ppi_edgelist.tsv
with filtered high-confidence PPIs.
Run:
python hit_mapcmd.py \ --image_meta /path/to/image_meta.tsv \ --ppi_dir /path/to/ppi_file.tsv \ --microscope_setup_param /path/to/microscope_setup_param.npy \ --output_dir /path/to/save/outputfiles
By default, provenance files are taken from:
./hit_map/provence_files/provence_image.json ./hit_map/provence_files/provence_ppi.json
You may edit these files manually for FAIR compliance or provide custom files via:
--provenance_img --provenance_ppi
All results will be stored under the specified output_dir
:
- deconvoluted_images/: deconvolved
.tif
images (PSF corrected)- subfolders: blue, green, red, yellow
- z_max_projection/: Z-max projected
.jpg
images- subfolders: blue, green, red, yellow
- embedding/: data embeddings
img_embedding/
:img_emb.tsv
(image embeddings capturing protein localization)ppi_embedding/
:ppi_emb.tsv
(PPI network embeddings)co_embedding/
:co_emb.tsv
(joint protein embedding space)
- hierarchy/:
.cx2
file of co-embedded hierarchy clustered using HiDef - hierarchy_eval/: evaluation results (enrichment against HPA, GO, CORUM, etc.)
This project is licensed under the MIT License. See the LICENSE
file for details.
Contributions, issues, and feature requests are welcome. Please open an issue or submit a pull request to collaborate.
Developed and maintained by the Ideker Lab.
- Python 3.8 to Python 3.11
For information, invoke:
hit_mapcmd.py -h
This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.