pip install networkx pip install -U pip python3 -m pip install streamlit
streamlit run app_streamlit.py
/Library/Frameworks/Python.framework/Versions/3.8/Resources/Python.app/Contents/MacOS/Python /Library/Frameworks/Python.framework/Versions/3.8/bin/streamlit run app_streamlit.py
- build base docker image with all dependencies docker build --target ml_similarity_base -t ml-similarity-base:latest .
- Build container with app docker build --target ml_similarity_app -t ml_similarity_app:latest .
docker-compose up docker-compose stop docker-compose up -d --build
docker run -p 8501:8501 ml_similarity_app http://localhost:8501/
docker run --entrypoint "/bin/sh" -it ml-similarity-base
https://phase2.github.io/devtools/common-tasks/ssh-into-a-container/ docker exec -it /bin/bash
- images: docker rmi
- containers: docker rm $(docker ps -aq) docker system prune
ls -l /usr/local/bin/python*
https://kanoki.org/2020/07/04/create-interactive-dashboard-in-python-using-streamlit/
- Similarities detection
- Features importance detection https://towardsdatascience.com/feature-selection-techniques-in-machine-learning-with-python-f24e7da3f36e#:~:text=using%20SelectKBest%20class-,2.,feature%20towards%20your%20output%20variable. HEATMAP - (or heatmap) is a data visualization technique that shows magnitude of a phenomenon as color in two dimensions.
https://www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction https://towardsdatascience.com/formatting-tips-for-correlation-heatmaps-in-seaborn-4478ef15d87f