Skip to content

Add FTRL and Adam optimizers. #123

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 17, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 1 addition & 4 deletions keras_rs/src/layers/embedding/base_distributed_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -174,12 +174,9 @@ class DistributedEmbedding(keras.layers.Layer):
supported on all backends and accelerators:

- `keras.optimizers.Adagrad`
- `keras.optimizers.SGD`

The following are additionally available when using the TensorFlow backend:

- `keras.optimizers.Adam`
- `keras.optimizers.Ftrl`
- `keras.optimizers.SGD`

Also, not all parameters of the optimizers are supported (e.g. the
`nesterov` option of `SGD`). An error is raised when an unsupported
Expand Down
80 changes: 75 additions & 5 deletions keras_rs/src/layers/embedding/jax/config_conversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,18 +229,63 @@ def keras_to_jte_optimizer(
# pylint: disable-next=protected-access
learning_rate = keras_to_jte_learning_rate(optimizer._learning_rate)

# SGD or Adagrad
# Unsupported keras optimizer general options.
if optimizer.clipnorm is not None:
raise ValueError("Unsupported optimizer option `clipnorm`.")
if optimizer.global_clipnorm is not None:
raise ValueError("Unsupported optimizer option `global_clipnorm`.")
if optimizer.use_ema:
raise ValueError("Unsupported optimizer option `use_ema`.")
if optimizer.loss_scale_factor is not None:
raise ValueError("Unsupported optimizer option `loss_scale_factor`.")

# Supported optimizers.
if isinstance(optimizer, keras.optimizers.SGD):
if getattr(optimizer, "nesterov", False):
raise ValueError("Unsupported optimizer option `nesterov`.")
if getattr(optimizer, "momentum", 0.0) != 0.0:
raise ValueError("Unsupported optimizer option `momentum`.")
return embedding_spec.SGDOptimizerSpec(learning_rate=learning_rate)
elif isinstance(optimizer, keras.optimizers.Adagrad):
if getattr(optimizer, "epsilon", 1e-7) != 1e-7:
raise ValueError("Unsupported optimizer option `epsilon`.")
return embedding_spec.AdagradOptimizerSpec(
learning_rate=learning_rate,
initial_accumulator_value=optimizer.initial_accumulator_value,
)
elif isinstance(optimizer, keras.optimizers.Adam):
if getattr(optimizer, "amsgrad", False):
raise ValueError("Unsupported optimizer option `amsgrad`.")

# Default to SGD for now, since other optimizers are still being created,
# and we don't want to fail.
return embedding_spec.SGDOptimizerSpec(learning_rate=learning_rate)
return embedding_spec.AdamOptimizerSpec(
learning_rate=learning_rate,
beta_1=optimizer.beta_1,
beta_2=optimizer.beta_2,
epsilon=optimizer.epsilon,
)
elif isinstance(optimizer, keras.optimizers.Ftrl):
if (
getattr(optimizer, "l2_shrinkage_regularization_strength", 0.0)
!= 0.0
):
raise ValueError(
"Unsupported optimizer option "
"`l2_shrinkage_regularization_strength`."
)

return embedding_spec.FTRLOptimizerSpec(
learning_rate=learning_rate,
learning_rate_power=optimizer.learning_rate_power,
l1_regularization_strength=optimizer.l1_regularization_strength,
l2_regularization_strength=optimizer.l2_regularization_strength,
beta=optimizer.beta,
initial_accumulator_value=optimizer.initial_accumulator_value,
)

raise ValueError(
f"Unsupported optimizer type {type(optimizer)}. Optimizer must be "
f"one of [Adagrad, Adam, Ftrl, SGD]."
)


def jte_to_keras_optimizer(
Expand All @@ -262,8 +307,33 @@ def jte_to_keras_optimizer(
learning_rate=learning_rate,
initial_accumulator_value=optimizer.initial_accumulator_value,
)
elif isinstance(optimizer, embedding_spec.AdamOptimizerSpec):
return keras.optimizers.Adam(
learning_rate=learning_rate,
beta_1=optimizer.beta_1,
beta_2=optimizer.beta_2,
epsilon=optimizer.epsilon,
)
elif isinstance(optimizer, embedding_spec.FTRLOptimizerSpec):
if getattr(optimizer, "initial_linear_value", 0.0) != 0.0:
raise ValueError(
"Unsupported optimizer option `initial_linear_value`."
)
if getattr(optimizer, "multiply_linear_by_learning_rate", False):
raise ValueError(
"Unsupported optimizer option "
"`multiply_linear_by_learning_rate`."
)
return keras.optimizers.Ftrl(
learning_rate=learning_rate,
learning_rate_power=optimizer.learning_rate_power,
initial_accumulator_value=optimizer.initial_accumulator_value,
l1_regularization_strength=optimizer.l1_regularization_strength,
l2_regularization_strength=optimizer.l2_regularization_strength,
beta=optimizer.beta,
)

raise ValueError(f"Unknown optimizer spec {optimizer}")
raise ValueError(f"Unknown optimizer spec {type(optimizer)}.")


def _keras_to_jte_table_config(
Expand Down
7 changes: 7 additions & 0 deletions keras_rs/src/layers/embedding/jax/config_conversion_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -239,6 +239,13 @@ def test_initializer_conversion(
),
),
("Adagrad", lambda: keras.optimizers.Adagrad(learning_rate=0.02)),
("Adam", lambda: keras.optimizers.Adam(learning_rate=0.03)),
(
"Ftrl",
lambda: keras.optimizers.Ftrl(
learning_rate=0.05,
),
),
("string", lambda: "adagrad"),
)
def test_optimizer_conversion(
Expand Down