Skip to content

The official implementation of paper: Progressive LoRA for Multimodal Continual Instruction Tuning. (ACL 2025 Findings)

License

Notifications You must be signed in to change notification settings

ku-nlp/ProgLoRA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Progressive LoRA for Multimodal Continual Instruction Tuning (ACL 2025 Findings)

This repository contains all of our ProgLoRA code. We sincerely thank the help of Chen et al.'s repository.

Install

  1. Install Package
conda create -n prog python=3.10 -y
conda activate prog
pip install --upgrade pip
pip install -e .
  1. Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation

This repo is based on CoIN. If you meet a problem, maybe you could find some solutions in issuses.

Dataset

Please download the images from the constituting dataset: ScienceQA, VQAv2, VizWiz, TextVQA, GQA, OCR-VQA, ImageNet, RefCOCO, RefCOCO+, and RefCOCOg.

Image Source Download Path
COCO train2014, test2015, val2014
RefCOCO annotation
RefCOCO+ annotation
RefCOCOg annotation
ImageNet images
OCR-VQA images
GQA images
TextVQA train,test
ScienceQA images
VizWiz train, val, test

After downloading all of them, organize the data as follows:

├── COCO2014
│   └── train2014
├── GQA
│   └── images
├── OCR-VQA
│   └── images
├── TextVQA
│   └── train_images
│   └── test_images

Then, please download the instructions: CoIN_Dataset then, organize the instructions as follows:

├── Instruction_Original
│   └── GQA
│       └── train.json
│       └── test.json
│   └── ScienceQA
│       └── train.json
│       └── test.json
├── Instruction_Type2
│   └── GQA
│       └── train.json
│       └── test.json

Instruction Tuning

First, downloading the pretrained projectors in LLaVA Model_Zoo and setting pretrain_mm_mlp_adapter.

We provide the training scripts in scripts/LLaVA/Train_MOE_dynamic_share.

Evaluation

We have prepared the scripts to evaluate the trained model in scripts/LLaVA/Eval_dynamic_share.

About

The official implementation of paper: Progressive LoRA for Multimodal Continual Instruction Tuning. (ACL 2025 Findings)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published