Skip to content

fix connection problem.zoo #577

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 31, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 89 additions & 25 deletions pina/problem/zoo/inverse_poisson_2d_square.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
"""Formulation of the inverse Poisson problem in a square domain."""

import warnings
import requests
import torch
from io import BytesIO
Expand All @@ -9,6 +10,44 @@
from ...domain import CartesianDomain
from ...equation import Equation, FixedValue
from ...problem import SpatialProblem, InverseProblem
from ...utils import custom_warning_format, check_consistency

warnings.formatwarning = custom_warning_format
warnings.filterwarnings("always", category=ResourceWarning)


def _load_tensor_from_url(url, labels, timeout=10):
"""
Downloads a tensor file from a URL and wraps it in a LabelTensor.

This function fetches a `.pth` file containing tensor data, extracts it,
and returns it as a LabelTensor using the specified labels. If the file
cannot be retrieved (e.g., no internet connection), a warning is issued
and None is returned.

:param str url: URL to the remote `.pth` tensor file.
:param list[str] | tuple[str] labels: Labels for the resulting LabelTensor.
:param int timeout: Timeout for the request in seconds.
:return: A LabelTensor object if successful, otherwise None.
:rtype: LabelTensor | None
"""
# Try to download the tensor file from the given URL
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
tensor = torch.load(
BytesIO(response.content), weights_only=False
).tensor.detach()
return LabelTensor(tensor, labels)

# If the request fails, issue a warning and return None
except requests.exceptions.RequestException as e:
warnings.warn(
f"Could not download data for 'InversePoisson2DSquareProblem' "
f"from '{url}'. Reason: {e}. Skipping data loading.",
ResourceWarning,
)
return None


def laplace_equation(input_, output_, params_):
Expand All @@ -29,35 +68,13 @@ def laplace_equation(input_, output_, params_):
return delta_u - force_term


# URL of the file
url = "https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial7/data/pts_0.5_0.5"
# Download the file
response = requests.get(url)
response.raise_for_status()
file_like_object = BytesIO(response.content)
# Set the data
input_data = LabelTensor(
torch.load(file_like_object, weights_only=False).tensor.detach(),
["x", "y", "mu1", "mu2"],
)

# URL of the file
url = "https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial7/data/pinn_solution_0.5_0.5"
# Download the file
response = requests.get(url)
response.raise_for_status()
file_like_object = BytesIO(response.content)
# Set the data
output_data = LabelTensor(
torch.load(file_like_object, weights_only=False).tensor.detach(), ["u"]
)


class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
r"""
Implementation of the inverse 2-dimensional Poisson problem in the square
domain :math:`[0, 1] \times [0, 1]`,
with unknown parameter domain :math:`[-1, 1] \times [-1, 1]`.
The `"data"` condition is added only if the required files are
downloaded successfully.

:Example:
>>> problem = InversePoisson2DSquareProblem()
Expand All @@ -83,5 +100,52 @@ class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
"g3": Condition(domain="g3", equation=FixedValue(0.0)),
"g4": Condition(domain="g4", equation=FixedValue(0.0)),
"D": Condition(domain="D", equation=Equation(laplace_equation)),
"data": Condition(input=input_data, target=output_data),
}

def __init__(self, load=True, data_size=1.0):
"""
Initialization of the :class:`InversePoisson2DSquareProblem`.

:param bool load: If True, it attempts to load data from remote URLs.
Set to False to skip data loading (e.g., if no internet connection).
:param float data_size: The fraction of the total data to use for the
"data" condition. If set to 1.0, all available data is used.
If set to 0.0, no data is used. Default is 1.0.
:raises ValueError: If `data_size` is not in the range [0.0, 1.0].
:raises ValueError: If `data_size` is not a float.
"""
super().__init__()

# Check consistency
check_consistency(load, bool)
check_consistency(data_size, float)
if not 0.0 <= data_size <= 1.0:
raise ValueError(
f"data_size must be in the range [0.0, 1.0], got {data_size}."
)

# Load data if requested
if load:

# Define URLs for input and output data
input_url = (
"https://github.com/mathLab/PINA/raw/refs/heads/master"
"/tutorials/tutorial7/data/pts_0.5_0.5"
)
output_url = (
"https://github.com/mathLab/PINA/raw/refs/heads/master"
"/tutorials/tutorial7/data/pinn_solution_0.5_0.5"
)

# Define input and output data
input_data = _load_tensor_from_url(
input_url, ["x", "y", "mu1", "mu2"]
)
output_data = _load_tensor_from_url(output_url, ["u"])

# Add the "data" condition
if input_data is not None and output_data is not None:
n_data = int(input_data.shape[0] * data_size)
self.conditions["data"] = Condition(
input=input_data[:n_data], target=output_data[:n_data]
)
17 changes: 15 additions & 2 deletions tests/test_problem_zoo/test_inverse_poisson_2d_square.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,25 @@
from pina.problem.zoo import InversePoisson2DSquareProblem
from pina.problem import InverseProblem, SpatialProblem
import pytest


def test_constructor():
problem = InversePoisson2DSquareProblem()
@pytest.mark.parametrize("load", [True, False])
@pytest.mark.parametrize("data_size", [0.01, 0.05])
def test_constructor(load, data_size):

# Define the problem with or without loading data
problem = InversePoisson2DSquareProblem(load=load, data_size=data_size)

# Discretise the domain
problem.discretise_domain(n=10, mode="random", domains="all")

# Check if the problem is correctly set up
assert problem.are_all_domains_discretised
assert isinstance(problem, InverseProblem)
assert isinstance(problem, SpatialProblem)
assert hasattr(problem, "conditions")
assert isinstance(problem.conditions, dict)

# Should fail if data_size is not in the range [0.0, 1.0]
with pytest.raises(ValueError):
problem = InversePoisson2DSquareProblem(load=load, data_size=3.0)
7 changes: 1 addition & 6 deletions tests/test_solver/test_competitive_pinn.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,9 @@
# define problems
problem = Poisson()
problem.discretise_domain(10)
inverse_problem = InversePoisson()
inverse_problem = InversePoisson(load=True, data_size=0.01)
inverse_problem.discretise_domain(10)

# reduce the number of data points to speed up testing
data_condition = inverse_problem.conditions["data"]
data_condition.input = data_condition.input[:10]
data_condition.target = data_condition.target[:10]

# add input-output condition to test supervised learning
input_pts = torch.rand(10, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
Expand Down
7 changes: 1 addition & 6 deletions tests/test_solver/test_gradient_pinn.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,14 +31,9 @@ class DummyTimeProblem(TimeDependentProblem):
# define problems
problem = Poisson()
problem.discretise_domain(10)
inverse_problem = InversePoisson()
inverse_problem = InversePoisson(load=True, data_size=0.01)
inverse_problem.discretise_domain(10)

# reduce the number of data points to speed up testing
data_condition = inverse_problem.conditions["data"]
data_condition.input = data_condition.input[:10]
data_condition.target = data_condition.target[:10]

# add input-output condition to test supervised learning
input_pts = torch.rand(10, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
Expand Down
7 changes: 1 addition & 6 deletions tests/test_solver/test_pinn.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,9 @@
# define problems
problem = Poisson()
problem.discretise_domain(10)
inverse_problem = InversePoisson()
inverse_problem = InversePoisson(load=True, data_size=0.01)
inverse_problem.discretise_domain(10)

# reduce the number of data points to speed up testing
data_condition = inverse_problem.conditions["data"]
data_condition.input = data_condition.input[:10]
data_condition.target = data_condition.target[:10]

# add input-output condition to test supervised learning
input_pts = torch.rand(10, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
Expand Down
7 changes: 1 addition & 6 deletions tests/test_solver/test_rba_pinn.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,14 +19,9 @@
# define problems
problem = Poisson()
problem.discretise_domain(10)
inverse_problem = InversePoisson()
inverse_problem = InversePoisson(load=True, data_size=0.01)
inverse_problem.discretise_domain(10)

# reduce the number of data points to speed up testing
data_condition = inverse_problem.conditions["data"]
data_condition.input = data_condition.input[:10]
data_condition.target = data_condition.target[:10]

# add input-output condition to test supervised learning
input_pts = torch.rand(10, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
Expand Down
7 changes: 1 addition & 6 deletions tests/test_solver/test_self_adaptive_pinn.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,14 +20,9 @@
# define problems
problem = Poisson()
problem.discretise_domain(10)
inverse_problem = InversePoisson()
inverse_problem = InversePoisson(load=True, data_size=0.01)
inverse_problem.discretise_domain(10)

# reduce the number of data points to speed up testing
data_condition = inverse_problem.conditions["data"]
data_condition.input = data_condition.input[:10]
data_condition.target = data_condition.target[:10]

# add input-output condition to test supervised learning
input_pts = torch.rand(10, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
Expand Down
Loading