PyTorch implements "DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning"
https://colab.research.google.com/drive/1xWHovxTkysiPei68bTywqB2oCo6JelAU?usp=sharing
- 
Build environment
git clone https://github.com/nailo2c/deeplog.git cd deeplog python3 -m venv venv . venv/bin/activate pip install -r requirements.txt
 - 
Run local example
We use open data
OpenStackfrom logpai's loghub2.1. Preprocess
cd example/ python3 preprocess.py
2.2. Train
num-classis count ofevent_id_map, whereevent_id_mapis generated bypreprocess.py.num-candidatesis self-define, here we definenum-candidatesisnum-class*0.1python3 train.py --num-class 1143 --num-candidates 114 --epochs 35 --window-size 3 --local True
2.3. Predict
python3 predict.py --threshold 25
 - 
Result
Accuracy 0.9430014 Precision 0.6497461 Recall 0.9275362 F1 0.7641791  - 
Deactivate
deactivate
 
- 
This tree structure is generate by mac terminal tool
tree& copy paste it toREADME.md.tree -I "__pycache__|tmp.*" >> tmp.txt
 
.
├── README.md
├── deeplog
│   ├── __init__.py
│   └── deeplog.py
├── example
│   ├── data
│   │   └── OpenStack
│   │       ├── anomaly_labels.txt
│   │       ├── openstack_abnormal.log
│   │       ├── openstack_normal1.log
│   │       └── openstack_normal2.log
│   ├── predict.py
│   ├── preprocess.py
│   └── train.py
└── requirements.txt