Skip to content

[Exutorch] Add broadcast support for le op #11569

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 9 commits into from
Jun 13, 2025
79 changes: 34 additions & 45 deletions kernels/optimized/cpu/op_le.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@

#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <executorch/kernels/optimized/cpu/binary_ops.h>
#include <executorch/kernels/portable/cpu/pattern/comparison_op.h>
#include <executorch/kernels/portable/cpu/scalar_utils.h>
#include <executorch/kernels/portable/cpu/util/broadcast_util.h>
#include <executorch/runtime/kernel/kernel_includes.h>
Expand Down Expand Up @@ -79,52 +81,39 @@ Tensor& opt_le_tensor_out(
return out;
}

ET_KERNEL_CHECK(ctx, tensors_have_same_shape(a, b), InvalidArgument, out);

// Resize for dynamic shape
auto error = resize_tensor(out, a.sizes());
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");

if (a_type == b_type && a_type == out_type) {
ET_SWITCH_REAL_TYPES_AND(
Bool, out_type, ctx, "le.Tensor_out", CTYPE, [&]() {
using Vec = at::vec::Vectorized<CTYPE>;
at::vec::map2<CTYPE>(
[](Vec x, Vec y) { return x.le(y); },
out.mutable_data_ptr<CTYPE>(),
a.const_data_ptr<CTYPE>(),
b.const_data_ptr<CTYPE>(),
a.numel());
});
// Check for optimized broadcast paths
auto selected_optimized_path = select_optimized_path(a, b, out);
if (selected_optimized_path == ElementwiseOptimizedPath::kTreatAs1d) {
// Resize for dynamic shape
auto error = resize_to_broadcast_target_size(a, b, out);
ET_KERNEL_CHECK_MSG(
ctx,
error == Error::Ok,
InvalidArgument,
out,
"Failed to resize output tensor.");

ET_SWITCH_REALB_TYPES(a_type, ctx, "le.Tensor_out", CTYPE, [&]() {
using Vec = at::vec::Vectorized<CTYPE>;
at::vec::map2<CTYPE>(
[](Vec x, Vec y) { return x.le(y); },
out.mutable_data_ptr<CTYPE>(),
a.const_data_ptr<CTYPE>(),
b.const_data_ptr<CTYPE>(),
out.numel());
});
} else if (selected_optimized_path != ElementwiseOptimizedPath::kNone) {
// Handle optimized broadcast cases
ET_SWITCH_REALB_TYPES(out_type, ctx, "le.Tensor_out", CTYPE, [&]() {
auto le_lambda = [](auto x, auto y) { return x.le(y); };
return torch::executor::handle_broadcast_elementwise<CTYPE>(
ctx, le_lambda, a, b, out, selected_optimized_path);
});
} else {
ET_SWITCH_REAL_TYPES_AND(
Bool, a_type, ctx, "le.Tensor_out", CTYPE_A, [&]() {
ET_SWITCH_REAL_TYPES_AND(
Bool, b_type, ctx, "le.Tensor_out", CTYPE_B, [&]() {
using CTYPE_IN = typename torch::executor::
promote_types<CTYPE_A, CTYPE_B>::type;
ET_DCHECK(
CppTypeToScalarType<CTYPE_IN>::value ==
promoteTypes(a_type, b_type));
ET_SWITCH_REAL_TYPES_AND(
Bool, out_type, ctx, "le.Tensor_out", CTYPE_OUT, [&]() {
const size_t n = a.numel();
const CTYPE_A* a_data = a.const_data_ptr<CTYPE_A>();
const CTYPE_B* b_data = b.const_data_ptr<CTYPE_B>();
CTYPE_OUT* out_data = out.mutable_data_ptr<CTYPE_OUT>();
for (auto i = 0; i < n; ++i) {
out_data[i] = static_cast<CTYPE_OUT>(
static_cast<CTYPE_IN>(a_data[i]) <=
static_cast<CTYPE_IN>(b_data[i]));
}
});
});
});
// @lint-ignore CLANGTIDY facebook-hte-CArray
static constexpr const char op_name[] = "le.Tensor_out";
return internal::comparison_tensor_out<std::less_equal, op_name>(
ctx, a, b, out);
}

return out;
Expand Down
Loading
Loading