Skip to content

Green-ChangePath #82

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,12 @@
<artifactId>mahout-core</artifactId>
<version>0.9</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.5</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
package nearsoft.academy.bigdata.recommendation;

import java.io.*;
import java.util.*;

import com.google.common.collect.BiMap;
import com.google.common.collect.HashBiMap;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.common.FastByIDMap;
import org.apache.mahout.cf.taste.impl.model.GenericPreference;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.CachingRecommender;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.model.PreferenceArray;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;

public class MovieRecommender {
private final String path;
private ArrayList<ArrayList<GenericPreference>> data;
private HashMap<String, Integer> userTraductor;
private BiMap<String, Integer> productTraductor;
private int userIntegerId = 0;
private int productIntegerId = 0;

public MovieRecommender(final String path) throws IOException {
this.path = path;
data = new ArrayList();
userTraductor = new HashMap();
productTraductor = HashBiMap.create();
BufferedReader reader = new BufferedReader(new FileReader(this.path));
String line = "";
String productCode = "";
String userCode = "";
while ((line = reader.readLine()) != null) {
if (line.trim().length() <= 0) continue;
String[] duo = line.split("/");
if (duo.length != 2) continue;
if (duo[0].equals("product")) {
String[] separator = duo[1].split(":");
productCode = separator[1].trim();
if (!productTraductor.containsKey(productCode)) {
productTraductor.put(productCode, productIntegerId);
productIntegerId++;
}
} else {
String[] separator = duo[1].split(":");
if (separator[0].equals("userId")) {
userCode = separator[1].trim();
if (!userTraductor.containsKey(userCode)) {
userTraductor.put(userCode, userIntegerId);
data.add(new ArrayList());
userIntegerId++;
}
} else if (separator[0].equals("score")) {
data.get(userTraductor.get(userCode)).add(new GenericPreference(userTraductor.get(userCode),
productTraductor.get(productCode), Float.valueOf(separator[1].trim())));
}
}
}
File newFile = new File("src\\resources\\mahoutData.csv");
newFile.createNewFile();
FileWriter myWriter = new FileWriter("src\\resources\\mahoutData.csv");
for (int i = 0; i < data.size(); i++) {
for (int j = 0; j < data.get(i).size(); j++) {
myWriter.write(data.get(i).get(j).getUserID() + "," +
data.get(i).get(j).getItemID() + "," + data.get(i).get(j).getValue() + "\n");
}
}
myWriter.close();
}

public int getTotalReviews() {
int reviews = 0;
for (ArrayList<GenericPreference> userReviews: data) {
reviews += userReviews.size();
}
return reviews;
}

public int getTotalProducts() {
return productTraductor.size();
}

public int getTotalUsers() {
return userTraductor.size();
}

public List<String> getRecommendationsForUser(final String userCode) throws IOException, TasteException {
DataModel model = new FileDataModel(new File("src\\resources\\mahoutData.csv"));
UserSimilarity userSimilarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood = new NearestNUserNeighborhood(getTotalUsers(), userSimilarity, model);
Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, userSimilarity);
Recommender cachingRecommender = new CachingRecommender(recommender);
int userId = userTraductor.get(userCode);
List<RecommendedItem> recommendations = cachingRecommender.recommend(userId, getTotalProducts());
List<String> l = new ArrayList();
for (RecommendedItem recommendation : recommendations) {
l.add(productTraductor.inverse().get((int) recommendation.getItemID()));
}
return l;
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ public class MovieRecommenderTest {
public void testDataInfo() throws IOException, TasteException {
//download movies.txt.gz from
// http://snap.stanford.edu/data/web-Movies.html
MovieRecommender recommender = new MovieRecommender("/path/to/movies.txt.gz");
MovieRecommender recommender = new MovieRecommender("src\\resources\\movies.csv");
assertEquals(7911684, recommender.getTotalReviews());
assertEquals(253059, recommender.getTotalProducts());
assertEquals(889176, recommender.getTotalUsers());
Expand Down