This is the implementation of “HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning” in Pytorch. The paper is procceding in NeurIPS 2021.
- Datasets can be downloaded Here. Put it in the
datadir. - Download our pretrained models from google drive Here, including CUB, SUN, AWA1 and AWA2 models. Put it in the
resultdir. Note that we just provide one pre-trained model for every dataset.
To Train the HSVA in the GZSL or CZSL setting, please run the commands in the following:
CUDA_VISIBLE_DEVICES="2" python single_experiment.py --dataset CUB --latent_size 64 --generalized True
CUDA_VISIBLE_DEVICES="2" python single_experiment.py --dataset SUN --latent_size 128 --generalized True
CUDA_VISIBLE_DEVICES="2" python single_experiment.py --dataset AWA1 --latent_size 64 --generalized True
CUDA_VISIBLE_DEVICES="2" python single_experiment.py --dataset AWA2 --latent_size 64 --generalized True
--gdataset test dataset, i.e., CUB, SUN, AWA1, and AWA2.
--generalized test for GZSL (True) or CZSL (False).
To test the results for GZSL or CZSL, please run the commands in the following:
CUDA_VISIBLE_DEVICES="2" python test.py --dataset CUB --latent_size 64 --generalized True
CUDA_VISIBLE_DEVICES="2" python test.py --dataset SUN --latent_size 128 --generalized True
CUDA_VISIBLE_DEVICES="2" python test.py --dataset AWA1 --latent_size 64 --generalized True
CUDA_VISIBLE_DEVICES="2" python test.py --dataset AWA2 --latent_size 64 --generalized True
--gdataset test dataset, i.e., CUB, SUN, AWA1, and AWA2.
--generalized test for GZSL (True) or CZSL (False).
Results of our released model using various evaluation protocols on four datasets, both in conventional ZSL (CZSL) and generalized ZSL (GZSL) setting.
| Datasets | U | S | H | acc |
|---|---|---|---|---|
| AWA1 | 61.1 | 75.2 | 67.4 | 70.6 |
| AWA2 | 57.8 | 79.3 | 66.9 | -- |
| CUB | 51.9 | 59.5 | 55.5 | 62.8 |
| SUN | 48.6 | 39.0 | 43.3 | 63.8 |
If this work is helpful for you, please cite our paper.
@inproceedings{Chen2021HSVA,
title={HSVA: Hierarchical Semantic-Visual Adaptation for Zero-Shot Learning},
author={Chen, Shiming and Xie, Guo-Sen and Peng, Qinmu and Liu, Yang and Sun, Baigui and Li, Hao and You, Xinge and Shao, Ling},
booktitle={35th Conference on Neural Information Processing Systems (NeurIPS)},
year={2021}
}
We thank the following repos providing helpful components in our work.
