About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Compute a two-sample Z-test for two double-precision floating-point strided arrays.
A Z-test commonly refers to a two-sample location test which compares the means of two independent sets of measurements X
and Y
when the population standard deviations are known. A Z-test supports testing three different null hypotheses H0
:
H0: μX - μY ≥ Δ
versus the alternative hypothesisH1: μX - μY < Δ
.H0: μX - μY ≤ Δ
versus the alternative hypothesisH1: μX - μY > Δ
.H0: μX - μY = Δ
versus the alternative hypothesisH1: μX - μY ≠ Δ
.
Here, μX
and μY
are the true population means of samples X
and Y
, respectively, and Δ
is the hypothesized difference in means (typically 0
by default).
npm install @stdlib/stats-strided-dztest2
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var dztest2 = require( '@stdlib/stats-strided-dztest2' );
Computes a two-sample Z-test for two double-precision floating-point strided arrays.
var Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 4.0, 6.0, 6.0, 5.0 ] );
var y = new Float64Array( [ 3.0, 3.0, 5.0, 7.0, 7.0 ] );
var results = new Results();
var out = dztest2( x.length, y.length, 'two-sided', 0.05, 0.0, 1.0, x, 1, 2.0, y, 1, results );
// returns {...}
var bool = ( out === results );
// returns true
The function has the following parameters:
- NX: number of indexed elements in
x
. - NY: number of indexed elements in
y
. - alternative: alternative hypothesis.
- alpha: significance level.
- diff: difference in means under the null hypothesis.
- sigmax: known standard deviation of
x
. - x: first input
Float64Array
. - strideX: stride length for
x
. - sigmay: known standard deviation of
y
. - y: second input
Float64Array
. - strideY: stride length for
y
. - out: output results object.
The N
and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to perform a two-sample Z-test over every other element in x
and y
,
var Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 0.0, 4.0, 0.0, 6.0, 0.0, 6.0, 0.0, 5.0, 0.0 ] );
var y = new Float64Array( [ 3.0, 0.0, 3.0, 0.0, 5.0, 0.0, 7.0, 0.0, 7.0, 0.0 ] );
var results = new Results();
var out = dztest2( 5, 5, 'two-sided', 0.05, 0.0, 1.0, x, 2, 2.0, y, 2, results );
// returns {...}
var bool = ( out === results );
// returns true
Note that indexing is relative to the first index. To introduce an offset, use typed array
views.
var Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 0.0, 4.0, 4.0, 6.0, 6.0, 5.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y0 = new Float64Array( [ 0.0, 3.0, 3.0, 5.0, 7.0, 7.0 ] );
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var results = new Results();
var out = dztest2( 5, 5, 'two-sided', 0.05, 0.0, 1.0, x1, 1, 2.0, y1, 1, results );
// returns {...}
var bool = ( out === results );
// returns true
dztest2.ndarray( NX, NY, alternative, alpha, diff, sigmax, x, strideX, offsetX, sigmay, y, strideY, offsetY, out )
Computes a two-sample Z-test for two double-precision floating-point strided arrays using alternative indexing semantics.
var Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 4.0, 4.0, 6.0, 6.0, 5.0 ] );
var y = new Float64Array( [ 3.0, 3.0, 5.0, 7.0, 7.0 ] );
var results = new Results();
var out = dztest2.ndarray( x.length, y.length, 'two-sided', 0.05, 0.0, 1.0, x, 1, 0, 2.0, y, 1, 0, results );
// returns {...}
var bool = ( out === results );
// returns true
The function has the following additional parameters:
- offsetX: starting index for
x
. - offsetY: starting index for
y
.
While typed array
views mandate a view offset based on the underlying buffer, offset parameters support indexing semantics based on starting indices. For example, to perform a two-sample Z-test over every other element in x
and y
starting from the second element
var Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 0.0, 4.0, 0.0, 4.0, 0.0, 6.0, 0.0, 6.0, 0.0, 5.0 ] );
var y = new Float64Array( [ 0.0, 3.0, 0.0, 3.0, 0.0, 5.0, 0.0, 7.0, 0.0, 7.0 ] );
var results = new Results();
var out = dztest2.ndarray( 5, 5, 'two-sided', 0.05, 0.0, 1.0, x, 2, 1, 2.0, y, 2, 1, results );
// returns {...}
var bool = ( out === results );
// returns true
- As a general rule of thumb, a Z-test is most reliable when
N >= 50
. For smaller sample sizes or when the standard deviations are unknown, prefer a t-test.
var Results = require( '@stdlib/stats-base-ztest-two-sample-results-float64' );
var normal = require( '@stdlib/random-array-normal' );
var dztest2 = require( '@stdlib/stats-strided-dztest2' );
var x = normal( 1000, 4.0, 2.0, {
'dtype': 'float64'
});
var y = normal( 800, 3.0, 2.0, {
'dtype': 'float64'
});
var results = new Results();
var out = dztest2( x.length, y.length, 'two-sided', 0.05, 1.0, 2.0, x, 1, 2.0, y, 1, results );
// returns {...}
console.log( out.toString() );
#include "stdlib/stats/strided/dztest2.h"
stdlib_strided_dztest2( NX, NY, alternative, alpha, diff, sigmax, *X, strideX, sigmay, *Y, strideY, *results )
Computes a two-sample Z-test for two double-precision floating-point strided arrays.
#include "stdlib/stats/base/ztest/two-sample/results/float64.h"
#include "stdlib/stats/base/ztest/alternatives.h"
struct stdlib_stats_ztest_two_sample_float64_results results = {
.rejected = false,
.alpha = 0.0,
.alternative = STDLIB_STATS_ZTEST_TWO_SIDED,
.pValue = 0.0,
.statistic = 0.0,
.ci = { 0.0, 0.0 },
.nullValue = 0.0,
.xmean = 0.0,
.ymean = 0.0
};
const double x[] = { 4.0, 4.0, 6.0, 6.0, 5.0 };
const double y[] = { 3.0, 3.0, 5.0, 7.0, 7.0 };
stdlib_strided_dztest2( 5, 5, STDLIB_STATS_ZTEST_TWO_SIDED, 0.05, 0.0, 1.0, x, 1, 2.0, y, 1, &results );
The function accepts the following arguments:
- NX:
[in] CBLAS_INT
number of indexed elements inx
. - NY:
[in] CBLAS_INT
number of indexed elements iny
. - alternative:
[in] enum STDLIB_STATS_ZTEST_ALTERNATIVE
alternative hypothesis. - alpha:
[in] double
significance level. - diff:
[in] double
difference in means under the null hypothesis. - sigmax
[in] double
known standard deviation ofx
. - X:
[in] double*
first inputFloat64Array
. - strideX:
[in] CBLAS_INT
stride length forX
. - sigmay
[in] double
known standard deviation ofy
. - Y:
[in] double*
second inputFloat64Array
. - strideY:
[in] CBLAS_INT
stride length forY
. - results:
[out] struct stdlib_stats_ztest_two_sample_results_float64*
output results object.
void stdlib_strided_dztest2( const CBLAS_INT NX, const CBLAS_INT NY, const enum STDLIB_STATS_ZTEST_ALTERNATIVE alternative, const double alpha, const double diff, const double sigmax, const double *X, const CBLAS_INT strideX, const double sigmay, const double *Y, const CBLAS_INT strideY, struct stdlib_stats_ztest_two_sample_float64_results *results );
stdlib_strided_dztest2_ndarray( NX, NY, alternative, alpha, diff, sigmax, *X, strideX, offsetX, sigmay, *Y, strideY, offsetY, *results )
Computes a two-sample Z-test for two double-precision floating-point strided arrays using alternative indexing semantics.
#include "stdlib/stats/base/ztest/two-sample/results/float64.h"
#include "stdlib/stats/base/ztest/alternatives.h"
struct stdlib_stats_ztest_two_sample_float64_results results = {
.rejected = false,
.alpha = 0.0,
.alternative = STDLIB_STATS_ZTEST_TWO_SIDED,
.pValue = 0.0,
.statistic = 0.0,
.ci = { 0.0, 0.0 },
.nullValue = 0.0,
.xmean = 0.0,
.ymean = 0.0
};
const double x[] = { 4.0, 4.0, 6.0, 6.0, 5.0 };
const double y[] = { 3.0, 3.0, 5.0, 7.0, 7.0 };
stdlib_strided_dztest2_ndarray( 5, 5, STDLIB_STATS_ZTEST_TWO_SIDED, 0.05, 0.0, 1.0, x, 1, 0, 2.0, y, 1, 0, &results );
The function accepts the following arguments:
- NX:
[in] CBLAS_INT
number of indexed elements inx
. - NY:
[in] CBLAS_INT
number of indexed elements iny
. - alternative:
[in] enum STDLIB_STATS_ZTEST_ALTERNATIVE
alternative hypothesis. - alpha:
[in] double
significance level. - diff:
[in] double
difference in means under the null hypothesis. - sigmax
[in] double
known standard deviation ofx
. - X:
[in] double*
first inputFloat64Array
. - strideX:
[in] CBLAS_INT
stride length forX
. - offsetX:
[in] CBLAS_INT
starting index forX
. - sigmay
[in] double
known standard deviation ofy
. - Y:
[in] double*
second inputFloat64Array
. - strideY:
[in] CBLAS_INT
stride length forY
. - offsetY:
[in] CBLAS_INT
starting index forY
. - results:
[out] struct stdlib_stats_ztest_two_sample_results_float64*
output results object.
void stdlib_strided_dztest2_ndarray( const CBLAS_INT NX, const CBLAS_INT NY, const enum STDLIB_STATS_ZTEST_ALTERNATIVE alternative, const double alpha, const double diff, const double sigmax, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX, const double sigmay, const double *Y, const CBLAS_INT strideY, const CBLAS_INT offsetY, struct stdlib_stats_ztest_two_sample_float64_results *results );
#include "stdlib/stats/strided/dztest2.h"
#include "stdlib/stats/base/ztest/two-sample/results/float64.h"
#include "stdlib/stats/base/ztest/alternatives.h"
#include <stdbool.h>
#include <stdio.h>
int main( void ) {
// Create a strided arrays:
const double x[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
const double y[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 };
// Specify the number of elements:
const int NX = 4;
const int NY = 4;
// Specify the stride lengths:
const int strideX = 2;
const int strideY = 2;
// Initialize a results object:
struct stdlib_stats_ztest_two_sample_float64_results results = {
.rejected = false,
.alpha = 0.0,
.alternative = STDLIB_STATS_ZTEST_TWO_SIDED,
.pValue = 0.0,
.statistic = 0.0,
.ci = { 0.0, 0.0 },
.nullValue = 0.0,
.xmean = 0.0,
.ymean = 0.0
};
// Compute a Z-test:
stdlib_strided_dztest2( NX, NY, STDLIB_STATS_ZTEST_TWO_SIDED, 0.05, 5.0, 3.0, x, strideX, 3.0, y, strideY, &results );
// Print the result:
printf( "Statistic: %lf\n", results.statistic );
printf( "Null hypothesis was %s\n", ( results.rejected ) ? "rejected" : "not rejected" );
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.