Skip to content

[WIP] A3C #5

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 79 additions & 7 deletions analysis.ipynb
Original file line number Diff line number Diff line change
@@ -1,5 +1,84 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/xiayunsun/code/venvs/py367/lib/python3.6/site-packages/gym/envs/registration.py:14: PkgResourcesDeprecationWarning: Parameters to load are deprecated. Call .resolve and .require separately.\n",
" result = entry_point.load(False)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(210, 160, 3)\n",
"0.78125\n",
"(210, 160)\n",
"(128, 128)\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAADqCAYAAACssY5nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH1RJREFUeJzt3XuQXGW57/Hvr7tnBjJJCCSawiRK9t4RCxWjpiJ1vFQ0W3bgeIi34oAC4VbREs7ebpSb2zpg7bIKjwKHLW4kSA6himuBHCKFXBVl1xYkhBSXQDTcJDkhIZN7JsncnvNHr247c+2Z7p7uXvl9qlK91tvr8vTknWfe9a6316uIwMzM0itT7wDMzKy2nOjNzFLOid7MLOWc6M3MUs6J3sws5ZzozcxSrmaJXtIiSeskrZd0Wa3OY2Zmw1MtxtFLygJ/Aj4PbACeAU6PiLVVP5mZmQ2rVi36+cD6iHgtIrqAO4HFNTqXmZkNI1ej484A3ipZ3wB8YqiNJfnruVZrWyPiXfUOwqweapXoRyRpKbC0Xue3Q86b9Q7ArF5qleg3ArNK1mcmZUURsQxYBm7Rm5nVUq366J8B5kiaLakVOA1YWaNzmZnZMGrSoo+IHkkXAg8DWWB5RLxUi3OZmdnwajK8ctRBNEjXzTXXXDOq7S+66KIx71/NfStVz3MPF0eVz/VsRMyr5gHNmoW/GWtmlnJ1G3XTDCppdffffzyvFipRyxa7mdWHW/RmZinnFr0dZKQrB7f4zZqPE70Nm7zHq8vIzGrHXTdmZinnFv0wKm3NVrL/eLak3Wo3Sze36M3MUs5fmLJDhb8wZYcst+jNzFKuIfroZ86c6WF7VlOuX3Yoc4vezCzlnOjNzFLOid7MLOWc6M3MUm7MiV7SLEm/lbRW0kuS/ikpv1LSRklrkn8nVy9cs/qStEjSOknrJV1W73jMylHJqJse4DsRsVrSJOBZSY8m710bET+pPDyzxiEpC/wM+DywAXhG0sqIWFvfyMyGN+YWfURsiojVyfJu4GVgRrUCM2tA84H1EfFaRHQBdwKL6xyT2YiqMo5e0jHAR4GngU8CF0o6C1hFvtW/fZB9lgJLAY488shqhGFWazOAt0rWNwCf6L9Rad3OZDIfP+yww8YnuhGU+y14SWPed7D9K9m3UpV85lrGUa3zHThwgJ6enhEPVnGilzQRuBf4dkTsknQD8K9AJK9XA+f23y8ilgHLAGbNmuVHIFhqlNbt9vb2+MAHPlDniPL27NlDJpMhIoZNxm1tbQC0tLQQEfT29rJv376D9ildLuwrib6+PiZMmEAmkylus3//fnp6egbsV7q/JCKCiRMnDohnLArn2bNnT/HYwyXXXC6fCtva2io+d399fX10dnaSyeQ7UAqfsxrneeWVV8rarqJRN5JayCf52yLilwARsTkieiOiD7iJ/OWuWRpsBGaVrM9Myswa2phb9Mr/ebwZeDkirikpPzoiNiWrXwJerCxEs4bxDDBH0mzyCf404Gv1DWlofX19tLa2FluSTz75JFu2bKGlpYW+vr6Dti20didOnMj1118PwAMPPEAul2P+/Pn84Ac/YMeOHQBkMpmD9i8cv7u7m+nTp3PGGWewY8cOtm3bBsAll1zCwoUL6e7uJiIGtGSz2SxdXV0cccQRnHjiiQAcccQRHDhwoHjs0XzmtrY2du/eDcBjjz3Gjh07aG1tpbe3d8D2kmhpaeHXv/41ANdff31VWtuS6O3tJZvN8r73vY+bbrqJTZvyaXHChAksWrSIadOm0d3dXdF5ylVJ180ngTOBFyStScq+B5wuaS75rps3gG9UFKFZg4iIHkkXAg8DWWB5RLxU57DKVuieaG9v5+qrr+bwww8HYPv27Zx//vlMnjyZlpaWAV0chWRYSLq9vb389Kc/5cgjj2T37t1cfPHFxfLCOUplMhlyuRyS+NOf/sSvfvWrYhxtbW1861vfYuvWrYPuW6mWlhYAJk2axI033khXVxfAQV05mUyGN998s7h9tbtuJJHL5Yo/v1p8zpGM+YwR8R/AYJ1eD449HLPGFhEP0qR1vKWlhWw2S3t7O0888QSTJ08GYOPGjZx11llks9liQi7VP9F3d3fz2GOPMWPGDN555x2+//3vA9DZ2TnoH4pCos9kMmzbto3HHnsMgGnTptHe3s7FF1/M9u3byeVyVU+ymUyGTCZDa2srr7/+ejHR9/T0kM1mkYQktm/PjxepRRIuJPrCH51sNlt8r6+vb9RXLWPREE+vHImfPGgj8SxZ5ZNEd3d3MemVdh+UOxqkq6vroGOUq7e3t3i+7u5uuru7i8m2miNfCl1LkyZN4sCBA/T19XHttdcWzyGJffv20dvbS1tbG/fffz8AP/7xj5k0aVJNWvWly+M9D0hTJHozq1whmWYyGXbs2FFMNtu2baO3t3fYZFv6XqFlPmnSJLZv315skQ63b2m3T6HvPpfLFfuxh9t/NDKZDAcOHCiO3pk+fTq5XK7Yci7EsXXrVm699VYWLlxIRAy4Z1GpwRJ5rYdwDsfPujEzSzm36M0OES0tLUyYMIFdu3bxyiuvHDT+fc+ePcV+60ILu/T9XC5H4Ytf7e3tbNq0qdhKLozGmTBhQrEfuq+vr7h/4Zh9fX2cdNJJfOUrXykePyLo6Ojg8MMPr0offWHUzc6dOwHYuXMnHR0dtLa2HnRsSXR2dtLb23tQS7807mpqbW0t9v8XfkbjyYnerMbqMcqioLQ/+IwzzqCnp6f4xab+2xW6WApdK4UvPq1du5azzjrroH0GG14ZEeRyOXbu3Ek2my1+4/22227jvvvuK27TP5GWfomrcIMY8slxrApdN1/+8peL3VL9lXZH7d27F4ApU6ZU/eboli1b+PrXv37Ql8aOOuoooLLPOBpO9GY1dMQRR3DyyY3xANfSlmT/RF+a3ArjzQvbFFr0pQZL9AUf/vCHD0rm2Wz2oG2GO/dHPvKR8j5MmQrfGeg/9r//eQvvDTbWvlKD/fyq9TnfeuutkTfCid6spqZOncqZZ55Z7zAspe65556ytnOiN6shSQeNmzarpnJH8njUjZlZyjnRm5mlnLtuzGpsvL8FadafW/RmZinnRG9mlnJO9GZmKedEb2aWctWYM/YNYDfQC/RExDxJRwF3AceQn3zk1MEmCDdrRJJmAbcC08lPoLMsIq6rZr0uzEBUi29iWroUnhVUyU39ao26+WxEbC1Zvwx4PCKuknRZsn5plc5lVms9wHciYrWkScCzkh4FzqZK9TqTyfDOO++wZcuW4rpZqcJjGd797nczffr0ihoFtRpeuRhYkCyvAJ7Aid6aRDLn8aZkebekl4EZVFCvC99gLLTK2traeOSRR1ixYgUAhx9+eF0mpLDGU6gH+/btA2DJkiWcf/75dHZ2Ft+H0Q3brUaiD+ARSQHcGBHLgOklE4S/Tf4S+CCSlgJLgeJT7swajaRjgI8CT1NGvU72Kdbt97znPcMde8CkHfWcnMIax2B1oxLVSPSfioiNkt4NPCrpldI3IyKSPwL0K18GLAOYNWuWmzHWcCRNBO4Fvh0Ru0p/4Yaq18l7xbp9/PHHl1W33XVjtVRx7YqIjcnrFuA+YD6wWdLRAMnrlkrPYzaeJLWQT/K3RcQvk+Ka1mu35g1qUw8qSvSS2pObVUhqB04EXgRWAkuSzZYA91dyHrPxpPxv2s3AyxFROuu467U1pUq7bqYD9yV/gXLA7RHxkKRngLslnQe8CZxa4XnMxtMngTOBFyStScq+B1yF67U1oYoSfUS8BgyYKiUiOoCFlRzbrF4i4j+Aoa6fXa+t6TTF0yufWrSo3iFYg/vPegdg1sB8q9/MLOWc6M3MUs6J3sws5ZzozcxSzonezCzlmmLUTd/f7ap3CGZmTaspEr1ZGpU+uKp/uR2aSp9I2WgPNTOzMShN9NX8pbbmVfoU02rWCffRm5mlnFv0ZnXS3d1NV1cXkG/RFyaccKv+0FX4/4+IYt3o7u6u+LhO9GbjoP9sQPv37+eUU05hwYIF9QnImsbkyZPZv39/cX0ss5A1RaLfNrmz3iGYVZUkuru72bt3L+CJR2ygwpyxhWkmK9EUid4srQqtM88Va/1Vs0440ZvVQUTQ2trKxIkTAbfobaBCi761tbXipD/m2iXpWElrSv7tkvRtSVdK2lhSfnJFEZrViaSspOckPZCsz5b0tKT1ku6S1FrvGM3KMeYWfUSsA+ZC/hcC2Eh+zthzgGsj4idVidCsfv4JeBmYnKz/iHzdvlPSz4HzgBvGcuCIoKWlpdiiNxtKS0tLxS36anXdLARejYg3azE0bNsHuqp+TEuZrdU9nKSZwH8FfghclMwj+znga8kmK4ArGWOiH+R81TiMpUg1++ir1TF4GnBHyfqFkp6XtFzSkYPtIGmppFWSVhVGHpg1kP8NXAL0JetTgR0R0ZOsbwBmDLZjad3u6OiofaRmI6i4RZ/0U54CXJ4U3QD8KxDJ69XAuf33i4hlwDKAWbNmeciBNQxJXwC2RMSzkhaMdv/Sun388ccPWbczmYwffWBDKrToq3GjvhpdNycBqyNiM0DhFUDSTcADVTiH2Xj6JHBKMpDgMPJ99NcBUyTlklb9TPL3pcbMQyqtHNWoJ9Xoujmdkm4bSUeXvPcl4MUqnMNs3ETE5RExMyKOId8t+ZuI+DrwW+CryWZLgPvrFKLZqFSU6CW1A58HfllS/L8kvSDpeeCzwD9Xcg6zBnIp+Ruz68n32d9cycEkFf+Z9VfN+lFR101E7CVf4UvLzqwookHc3vfeah/SUubEGh03Ip4AnkiWXwPm1+I8TvbWn78Za9bkIoIJEyYwZcqUg8qc8K1/Pejq6qKnp2eYPUbmRG9WR/2fdeMbtAbV/6PvRG9WR07sNpRG/MKUmZk1KLfozepAEp2dncVZhMyG0traSltbW0Ut/KZI9F13XlnvEKzRnfif9Y5gVCTR1dVFZ2dncd2sVGliP+yww9Kf6M3Syn30NhQPrzRrchFBLpejpaUFcIveBiok+lwu1zCPKTazUchms/zlL39h3bp1xXWzUr29vQAce+yxHHfccRWNpfeoGzOzlHOL3qxOstksuVz+V7DwalZQ6M6rxtVeU9Su3zx0Qr1DsAb3hROvqXcIo9bX11e8PHcfvfVXqBuFScIr0RSJ3iyNuru7i8Mr3aK3/gp98t3d3RUfy7XLbBwUWuyF0ROtra2sXr2aFStWADBhwoS6xWaNqdAIWLJkCfPmzSsm/v51qRxlJXpJy4HC9GofSsqOAu4CjgHeAE6NiO3JJMrXAScDncDZEbG67IjMGoCkKcAvgA+RnxbzXGAdg9T5sZ6jtI++MK1gNS7TrbkV6kGhblSjj77cUTe3AIv6lV0GPB4Rc4DHk3XITy04J/m3lPwcsmbN5jrgoYj4APAR4GWGrvNmDa2sFn1E/F7SMf2KFwMLkuUV5CdnuDQpvzXy1xVPSZoi6eiI2FSNgM1qTdIRwGeAswEiogvokjRUna9YJpNBUlUmgrbmVot6UMnRppck77eB6cnyDOCtku02JGVmzWI28A7wfyQ9J+kXybSZQ9V5s4ZWlT8bSet9VN/RlbRU0ipJq/bu3VuNMMyqJQd8DLghIj4K7KVfN81wdb60bnd0dNQ8WLORVJLoN0s6GiB53ZKUbwRmlWw3Myk7SEQsi4h5ETGvvb29gjDMqm4DsCEink7W7yGf+Ieq8wcprdtTp04dbBOzcVVJol8JLEmWlwD3l5SfpbwTgJ3un7dmEhFvA29JOjYpWgisZeg6b9bQyh1eeQf5m1DTJG0ArgCuAu6WdB7wJnBqsvmD5IdWric/vPKcKsdsNh7+B3CbpFbgNfL1OMPgdd6soZU76ub0Id5aOMi2AVxQSVBm9RYRa4B5g7w1oM6bNTqP5TIzSzknejOzlHOiNzNLOSd6M7OUc6I3M0s5J3ozs5RzojczSzknejOzlHOiNzNLOSd6M7OUc6I3M0s5J3ozs5RzojczSzknejOzlHOiNzNLuRETvaTlkrZIerGk7MeSXpH0vKT7JE1Jyo+RtE/SmuTfz2sZvFmtSPpnSS9JelHSHZIOkzRb0tOS1ku6K5mUxKzhldOivwVY1K/sUeBDEXE88Cfg8pL3Xo2Iucm/b1YnTLPxI2kG8I/AvIj4EJAFTgN+BFwbEX8HbAfOq1+UZuUbMdFHxO+Bbf3KHomInmT1KfITgJulSQ44XFIOmABsAj5HfqJwgBXAF+sUm9moVKOP/lzg1yXrsyU9J+l3kj491E6SlkpaJWnV3r17qxCGWXVExEbgJ8BfyCf4ncCzwI6SBs4GYEZ9IjQbnYoSvaR/AXqA25KiTcB7I+KjwEXA7ZImD7ZvRCyLiHkRMa+9vb2SMMyqStKRwGJgNvAeoJ2B3ZfD7V9sxHR0dNQoSrPyjTnRSzob+ALw9WRCcCLiQER0JMvPAq8C769CnGbj6e+B1yPinYjoBn4JfBKYknTlQL67cuNgO5c2YqZOnTo+EZsNY0yJXtIi4BLglIjoLCl/l6Rssvw3wBzgtWoEajaO/gKcIGmCJAELgbXAb4GvJtssAe6vU3xmo1LO8Mo7gD8Ax0raIOk84HpgEvBov2GUnwGel7SG/E2rb0bEtkEPbNagIuJp8vV3NfAC+d+TZcClwEWS1gNTgZvrFqTZKORG2iAiTh+keNAKHhH3AvdWGpRZvUXEFcAV/YpfA+bXIRyzivibsWZmKedEb2aWck70ZmYp50RvZpZyTvRmZinnRG9mlnJO9GZmKedEb2aWck70ZmYp50RvZpZyTvRmZinnRG9mlnJO9GZmKedEb2aWck70ZmYpV87EI8slbZH0YknZlZI2JpOOrJF0csl7l0taL2mdpH+oVeBmlRqibh8l6VFJf05ej0zKJenfkrr9vKSP1S9ys9Epp0V/C4NPjHxtRMxN/j0IIOk44DTgg8k+/16YWtCsAd3CwLp9GfB4RMwBHk/WAU4iPzXmHGApcMM4xWhWsRETfUT8Hih3OsDFwJ3JJOGvA+vxjDzWoIao24uBFcnyCuCLJeW3Rt5T5CcKP3p8IjWrTCV99Bcml7DLC5e3wAzgrZJtNiRlA0haKmmVpFV79+6tIAyzqpoeEZuS5beB6cnymOp2R0dH7SI1K9NYE/0NwN8Cc4FNwNWjPUBELIuIeRExr729fYxhmNVORAQQY9ivWLenTp1ag8jMRmdMiT4iNkdEb0T0ATfx1+6ZjcCskk1nJmVmzWJzoUsmed2SlLtuW9MaU6Lv1zf5JaAwamElcJqkNkmzyd+4+mNlIZqNq5XAkmR5CXB/SflZyeibE4CdJV08Zg0tN9IGku4AFgDTJG0ArgAWSJpL/rL2DeAbABHxkqS7gbVAD3BBRPTWJnSzygxRt68C7pZ0HvAmcGqy+YPAyeQHGHQC54x7wGZjNGKij4jTBym+eZjtfwj8sJKgzMbDEHUbYOEg2wZwQW0jMqsNfzPWzCzlnOjNzFLOid7MLOWc6M3MUs6J3sws5ZzozcxSzonezCzlnOjNzFJuxC9MmVnl8t+3MqvcWOqSW/Rm40ASkuodhqXAWOqSW/RmNZbJ/LU9VfgFzWQyTvxV1tfXx65duw76eY9FRDBlypSGuQrLZDLkcjlyubGnayd6sxrq6enhnXfeKa5HBJJoa2ujs7Oz4qR0qOvr6wMgl8tx1FFHcfvtt9PR0VFMiuUm68If3e7ubiZMmMDXvvY1pkyZQldXF8C4/j8VYi58hs2bN/Pcc89x4MCBAdvu27evrGO6lpmZpZxb9GY1VtoaLLTos9msu26qrLe3l46ODnbs2EE2mx3VvqUt+gMHDhzUxVYvhZZ9Npsll8vR2zvwie/l1iEnerMa6//L6Buz1VNIxBHBvn37WLlyJfv37x/1z7ewfV9fH7lcjpaWlmK3UL0UYurt7aWnp4eenp4B25TbNVXOxCPLgS8AWyLiQ0nZXcCxySZTgB0RMVfSMcDLwLrkvaci4ptlRWI2zoao2z8G/hvQBbwKnBMRO5L3LgfOA3qBf4yIh8s4x6A30VpbW0fd6rShRQTd3d387ne/q0qCbm1trXuiL9i/fz/btm0btI9+sFb+YMpp0d8CXA/cWiiIiP9eWJZ0NbCzZPtXI2JuWWc3q69b6Fe3gUeByyOiR9KPgMuBSyUdB5wGfBB4D/CYpPePNIPahg0b+O53vzugXBJ79uyhtbW1WNYoozyaVUQM2uptVoW68Yc//IEnn3xy0G6kt99+u6xjlTPD1O+TlvoAyl9bnAp8rqyzmTWQwep2RDxSsvoU8NVkeTFwZ0QcAF6XtB6YD/xhuHP09PSwffv2AeWS6O3t9agbG1FheGVFx6gwhk8DmyPizyVlsyU9J+l3kj491I6SlkpaJWnV3r17KwzDrCbOBX6dLM8A3ip5b0NSNkBp3U5TC9OaV6U3Y08H7ihZ3wS8NyI6JH0c+L+SPhgRu/rvGBHLgGUAs2bN8jWrNRRJ/0J+gvvbRrtvad1ub28PJ3ur1FBXfjUfdSMpB3wZ+HihLLmsPZAsPyvpVeD9wKqxnsdsvEk6m/xN2oXx147zjcCsks1mJmVmDa+Srpu/B16JiA2FAknvkpRNlv8GmAO8VlmIZuNH0iLgEuCUiOgseWslcJqkNkmzydftP9YjRrPRGjHRS7qD/A2nYyVtkHRe8tZpHNxtA/AZ4HlJa4B7gG9GxLZqBmxWLUPU7euBScCjktZI+jlARLwE3A2sBR4CLhhpxI1Zoyhn1M3pQ5SfPUjZvcC9lYdlVntD1O2bh9n+h8APaxeRWW14bJeZWco50ZuZpZwTvZlZyvmhZmY11NnZuXX16tV7ga31jmWcTMOfdTy9r5yNnOjNaigi3iVpVUTMq3cs48GftTG568bMLOWc6M3MUq4hum52Zvt4YMqeeodxSHpq0aIx73vCQw9VMZLK/JdHHhl5o/pZVu8AxpE/awNyi96sxpKHnB0S/FkbkxO9mVnKOdGbmaVcQ/TRW/00Uj972iRPwrwOyAK/iIir6hxSVUl6A9hNfg7dnoiYJ+ko4C7gGOAN4NSIGDjFVhMYYk7hQT9fMtvedcDJQCdwdkSsrkfcg3GL3qwGksd1/ww4CTgOOD2ZdzZtPhsRc0vGk18GPB4Rc4DHk/VmdQvQf7TCUJ/vJPKPrp4DLAVuGKcYy+IWvaVCA16ZzAfWR8RrAJLuJD/v7Nq6RlV7i4EFyfIK4Ang0noFU4kh5sse6vMtBm5NJqp5StIUSUdHxKbxiXZ4IyZ6SbOAW4HpQADLIuK6al7C7H7z//Gbc/9nJZ/DrNEMNsfsJ+oUS60E8IikAG5MRqFML0lub5PPG2ky1Ocbak7hhkj05XTd9ADfiYjjgBOAC5JL0Ka8hDGzqvlURHyM/O/8BZI+U/pm0rpN7XzQzfT5Rkz0EbGp0CKPiN3Ay+T/Ui0mf+lC8vrFZLl4CRMRTwFTJB1d9cjNGlvq55iNiI3J6xbgPvLdVZsLv+/J65b6RVgTQ32+hv7/HtXN2KS/6qPA04z+EsbsUPIMMEfSbEmt5KfeXFnnmKpGUrukSYVl4ETgRfKfcUmy2RLg/vpEWDNDfb6VwFnKOwHY2Sj98zCKm7GSJpKfJvDbEbEr3xWfFxGR9NOVTdJS8l07ZqkTET2SLgQeJj+8cnky72xaTAfuS/JADrg9Ih6S9AxwdzL/7pvAqXWMsSLJnMILgGmSNgBXAFcx+Od7kPx9yfXk702eM+4BD0P5bqYRNpJagAeAhyPimqRsHbAgIjYllzBPRMSxkm5Mlu/ov90wx2+Kfi5ras82yyNlzaptxK6bZBTNzcDLhSSfaMpLGDOzQ82ILXpJnwKeBF4A+pLi75Hvp78beC/JJUxEbEv+MFxP/osGncA5EbFqhHO4RW+15ha9HbLK6rqpeRBO9FZ7TvR2yPIjEMzMUs6J3sws5ZzozcxSzonezCzlGuXplVuBvclrM5pG88YOzR1/ubG/r9aBmDWqhhh1AyBpVbOOimjm2KG542/m2M3Gi7tuzMxSzonezCzlGinRL6t3ABVo5tihueNv5tjNxkXD9NGbmVltNFKL3szMaqDuiV7SIknrJK2X1BQzxkt6Q9ILktZIWpWUHSXpUUl/Tl6PrHecBZKWS9oi6cWSskHjTZ46+m/J/8fzkj5Wv8iHjP1KSRuTn/8aSSeXvHd5Evs6Sf9Qn6jNGktdE72kLPAz8nNOHgecnsxH2ww+GxFzS4b2DTWHbiO4hfzTREs1y5y/tzAwdoBrk5//3Ih4ECCpO6cBH0z2+fekjpkd0urdop8PrI+I1yKiC7iT/JyzzWioOXTrLiJ+D2zrV9wUc/4OEftQFgN3RsSBiHid/Gw/82sWnFmTqHeib9b5ZQN4RNKzyZSIMPQcuo2q2ef8vTDpWlpe0k3WLLGbjat6J/pm9amI+Bj5bo4LJH2m9M3ID2VqmuFMzRYv+e6kvwXmApuAq+sbjlljq3ei3wjMKlmfmZQ1tIjYmLxuAe4j3z2wudDFkbxuqV+EZRkq3ob/P4mIzRHRGxF9wE38tXum4WM3q4d6J/pngDmSZktqJX8jbWWdYxqWpHZJkwrLwInAiww9h26jato5f/vdM/gS+Z8/5GM/TVKbpNnkbyj/cbzjM2s0dX16ZUT0SLoQeBjIAssj4qV6xlSG6cB9+alxyQG3R8RDkp4B7pZ0HskcunWM8SCS7gAWANMkbQCuAK5i8HgfBE4mfyOzEzhn3AMuMUTsCyTNJd/d9AbwDYCIeEnS3cBaoAe4ICJ66xG3WSPxN2PNzFKu3l03ZmZWY070ZmYp50RvZpZyTvRmZinnRG9mlnJO9GZmKedEb2aWck70ZmYp9/8Bm9qAMTRCeMMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# visualise DQN preprocess\n",
"import gym\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"import numpy as np\n",
"import scipy.ndimage\n",
"\n",
"env = gym.make('BreakoutNoFrameskip-v4')\n",
"env.reset()\n",
"# accumulate 5 frames\n",
"frames = []\n",
"for i in range(5):\n",
" frame, reward, is_done, info = env.step(env.action_space.sample())\n",
" frames.append(frame)\n",
"print(frames[0].shape)\n",
"\n",
"plt.figure(1)\n",
"plt.subplot(121)\n",
"plt.imshow(frames[0])\n",
"plt.subplot(122)\n",
"\n",
"frame = np.maximum(frames[0], frames[1])\n",
"frame = np.divide(frame, 256)\n",
"print(np.amax(frame))\n",
"# greyscale\n",
"frame = np.dot(frame[...,:3], [0.299, 0.587, 0.114])\n",
"print(frame.shape)\n",
"# rescale\n",
"frame = scipy.ndimage.interpolation.zoom(frame, zoom = np.divide(128, frame.shape))\n",
"print(frame.shape)\n",
"\n",
"plt.imshow(frame, cmap = plt.get_cmap('gray'))\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 12,
Expand Down Expand Up @@ -47,13 +126,6 @@
"ax.legend(loc=4)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
Expand Down
34 changes: 34 additions & 0 deletions common/preprocess.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import numpy as np
import scipy.ndimage


def dqn_preprocess(frames, frames_to_stack=4, cropped_size=128.):
'''
preprocess following dqn nature paper
1. remove flickering: max(pixel) over previous frame
2. Convert RGB to greyscale
3. rescale to 84x84
4. do 1-4 for 4 frames and stack them
:param frames: last 5 frames of shape (210, 160, 3), we need 5 to perform the remove flickering step
:return: (84,84,4)
'''
RGB = 256
assert len(frames) == frames_to_stack + 1

processed_frames = []
for i in range(1, frames_to_stack + 1):
current_frame = frames[i]
prev_frame = frames[i - 1]
# step 1
frame = np.maximum(current_frame, prev_frame)
# step 2
# first normalise
assert np.amax(frame) <= RGB
frame = np.divide(frame, RGB)
frame = np.dot(frame[..., :3], [0.299, 0.587, 0.114]) # (210, 160)
# step 3
frame = scipy.ndimage.interpolation.zoom(frame, zoom=np.divide(cropped_size, frame.shape))

processed_frames.append(frame)

return np.dstack(processed_frames)
17 changes: 17 additions & 0 deletions tests/test_proprocess.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
import unittest

import gym

from common.preprocess import dqn_preprocess


class TestPreprocess(unittest.TestCase):
def test_dqn_preprocess(self):
env = gym.make('BreakoutNoFrameskip-v0')
env.reset()
frames = []
for i in range(5):
observation, _, _, _ = env.step(env.action_space.sample())
frames.append(observation)
result = dqn_preprocess(frames)
assert result.shape == (128, 128, 4)